Eniz Museljic, K. Roppert, L. Domenig, Alice Reinbacher Köstinger, M. Kaltenbacher
{"title":"Employing automatic differentiation and neural networks for parameter identification of an energy based hysteresis model","authors":"Eniz Museljic, K. Roppert, L. Domenig, Alice Reinbacher Köstinger, M. Kaltenbacher","doi":"10.3233/jae-230107","DOIUrl":null,"url":null,"abstract":"This paper is about the parameter identification of an energy based hysteresis model from measurements by employing automatic differentiation and neural networks. We first introduce the energy based hysteresis model and the parameters which are to be identified. Then we show how the model can benefit from automatic differentiation. After that we incorporate a parametrization of the energy based hysteresis model via distribution functions and identify the parameters of the distribution function. Then, the hysteresis model is sampled and the generated datasets are used to train neural networks to predict the hysteresis parameters. The described methods are tested and verified on synthetic as well as measurement data.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"52 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is about the parameter identification of an energy based hysteresis model from measurements by employing automatic differentiation and neural networks. We first introduce the energy based hysteresis model and the parameters which are to be identified. Then we show how the model can benefit from automatic differentiation. After that we incorporate a parametrization of the energy based hysteresis model via distribution functions and identify the parameters of the distribution function. Then, the hysteresis model is sampled and the generated datasets are used to train neural networks to predict the hysteresis parameters. The described methods are tested and verified on synthetic as well as measurement data.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.