Stavros N. Moutsis, Konstantinos A. Tsintotas, Ioannis Kansizoglou, Antonios Gasteratos
{"title":"Evaluating the Performance of Mobile-Convolutional Neural Networks for Spatial and Temporal Human Action Recognition Analysis","authors":"Stavros N. Moutsis, Konstantinos A. Tsintotas, Ioannis Kansizoglou, Antonios Gasteratos","doi":"10.3390/robotics12060167","DOIUrl":null,"url":null,"abstract":"Human action recognition is a computer vision task that identifies how a person or a group acts on a video sequence. Various methods that rely on deep-learning techniques, such as two- or three-dimensional convolutional neural networks (2D-CNNs, 3D-CNNs), recurrent neural networks (RNNs), and vision transformers (ViT), have been proposed to address this problem over the years. Motivated by the fact that most of the used CNNs in human action recognition present high complexity, and the necessity of implementations on mobile platforms that are characterized by restricted computational resources, in this article, we conduct an extensive evaluation protocol over the performance metrics of five lightweight architectures. In particular, we examine how these mobile-oriented CNNs (viz., ShuffleNet-v2, EfficientNet-b0, MobileNet-v3, and GhostNet) execute in spatial analysis compared to a recent tiny ViT, namely EVA-02-Ti, and a higher computational model, ResNet-50. Our models, previously trained on ImageNet and BU101, are measured for their classification accuracy on HMDB51, UCF101, and six classes of the NTU dataset. The average and max scores, as well as the voting approaches, are generated through three and fifteen RGB frames of each video, while two different rates for the dropout layers were assessed during the training. Last, a temporal analysis via multiple types of RNNs that employ features extracted by the trained networks is examined. Our results reveal that EfficientNet-b0 and EVA-02-Ti surpass the other mobile-CNNs, achieving comparable or superior performance to ResNet-50.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"83 24","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12060167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Human action recognition is a computer vision task that identifies how a person or a group acts on a video sequence. Various methods that rely on deep-learning techniques, such as two- or three-dimensional convolutional neural networks (2D-CNNs, 3D-CNNs), recurrent neural networks (RNNs), and vision transformers (ViT), have been proposed to address this problem over the years. Motivated by the fact that most of the used CNNs in human action recognition present high complexity, and the necessity of implementations on mobile platforms that are characterized by restricted computational resources, in this article, we conduct an extensive evaluation protocol over the performance metrics of five lightweight architectures. In particular, we examine how these mobile-oriented CNNs (viz., ShuffleNet-v2, EfficientNet-b0, MobileNet-v3, and GhostNet) execute in spatial analysis compared to a recent tiny ViT, namely EVA-02-Ti, and a higher computational model, ResNet-50. Our models, previously trained on ImageNet and BU101, are measured for their classification accuracy on HMDB51, UCF101, and six classes of the NTU dataset. The average and max scores, as well as the voting approaches, are generated through three and fifteen RGB frames of each video, while two different rates for the dropout layers were assessed during the training. Last, a temporal analysis via multiple types of RNNs that employ features extracted by the trained networks is examined. Our results reveal that EfficientNet-b0 and EVA-02-Ti surpass the other mobile-CNNs, achieving comparable or superior performance to ResNet-50.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM