Influence of cooling loss on the energy and exergy distribution of heavy-duty diesel engines based on two-stage variable supercharging, VVT, and EGR

IF 2.2 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Binyang Wu, Minshuo Shi, Zhenyuan Zi, Shouying Jin
{"title":"Influence of cooling loss on the energy and exergy distribution of heavy-duty diesel engines based on two-stage variable supercharging, VVT, and EGR","authors":"Binyang Wu, Minshuo Shi, Zhenyuan Zi, Shouying Jin","doi":"10.1177/14680874231212250","DOIUrl":null,"url":null,"abstract":"The application of mechanisms such as exhaust gas recirculation (EGR) coupled with variable valve timing (VVT) and a variable geometry turbocharger (VGT) can improve engine efficiency; however, the energy laws and loss distribution after EGR, VVT, and VGT changes are unclear, restricting the optimization of engine structures and corresponding strategies. Herein, a six-cylinder engine is studied, revealing that the cooling loss of the high-pressure (HP) EGR loop is an important factor affecting the engine energy distribution. The cooling loss accounts for 10.00%–20.00% of the total energy, with an average increase of 1.73%, surpassing other energy losses growth rates. The low-pressure (LP) EGR loop considerably reduces cooling losses. The cooling loss of the LP EGR loop is only 64.05% of the HP EGR loop at a 20% EGR rate. When the EGR rate is >10%, the resulting lower cooling losses effectively improve the engine efficiency and the indicated thermal efficiency (ITE) of the LP EGR loop is 0.20%–0.33% higher than that of the HP EGR loop; when the EGR rate is 21%, the ITE of the LP EGR loop reaches 49.52%. By studying the variation in exergy with operating parameters, it is found that while increasing the EGR rate from 15% to 20%, the proportion of available exergy increases by adjusting the VVT to −85° crank angle after top dead center (CA ATDC) or adjusting the VGT to 47.5% under the original operating scheme of the LP EGR loop (−146° CA ATDC; VGT = 42.5%). The available exergy increases from 71.22%–71.42% (−146° CA ATDC; VGT = 42.5%; original device) to 71.88%–71.58% (−146° CA ATDC; VGT = 47.5%) and 72.02%–72.21% (−85° CA ATDC; VGT = 42.5%). This study explores the energy distribution under different operating schemes, providing theoretical guidance for further improving the thermal efficiency of the entire device.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"7 6","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874231212250","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The application of mechanisms such as exhaust gas recirculation (EGR) coupled with variable valve timing (VVT) and a variable geometry turbocharger (VGT) can improve engine efficiency; however, the energy laws and loss distribution after EGR, VVT, and VGT changes are unclear, restricting the optimization of engine structures and corresponding strategies. Herein, a six-cylinder engine is studied, revealing that the cooling loss of the high-pressure (HP) EGR loop is an important factor affecting the engine energy distribution. The cooling loss accounts for 10.00%–20.00% of the total energy, with an average increase of 1.73%, surpassing other energy losses growth rates. The low-pressure (LP) EGR loop considerably reduces cooling losses. The cooling loss of the LP EGR loop is only 64.05% of the HP EGR loop at a 20% EGR rate. When the EGR rate is >10%, the resulting lower cooling losses effectively improve the engine efficiency and the indicated thermal efficiency (ITE) of the LP EGR loop is 0.20%–0.33% higher than that of the HP EGR loop; when the EGR rate is 21%, the ITE of the LP EGR loop reaches 49.52%. By studying the variation in exergy with operating parameters, it is found that while increasing the EGR rate from 15% to 20%, the proportion of available exergy increases by adjusting the VVT to −85° crank angle after top dead center (CA ATDC) or adjusting the VGT to 47.5% under the original operating scheme of the LP EGR loop (−146° CA ATDC; VGT = 42.5%). The available exergy increases from 71.22%–71.42% (−146° CA ATDC; VGT = 42.5%; original device) to 71.88%–71.58% (−146° CA ATDC; VGT = 47.5%) and 72.02%–72.21% (−85° CA ATDC; VGT = 42.5%). This study explores the energy distribution under different operating schemes, providing theoretical guidance for further improving the thermal efficiency of the entire device.
冷却损失对基于两级可变增压、VVT 和 EGR 的重型柴油发动机能量和放能分布的影响
废气再循环(EGR)与可变气门正时(VVT)和可变几何涡轮增压器(VGT)等机制的应用可以提高发动机效率;但由于EGR、VVT、VGT变化后的能量规律和损失分布不明确,制约了发动机结构的优化和相应策略的制定。本文以一台六缸发动机为研究对象,揭示了高压EGR回路的冷却损失是影响发动机能量分布的重要因素。冷却损失占总能量的10.00% ~ 20.00%,平均增长1.73%,超过其他能量损失增长率。低压EGR回路大大减少了冷却损失。当EGR率为20%时,低压EGR回路的冷却损失仅为高压EGR回路的64.05%。当EGR率>10%时,较低的冷却损失可有效提高发动机效率,低压EGR回路的指示热效率(ITE)比高压EGR回路高0.20% ~ 0.33%;当EGR率为21%时,LP EGR回路的ITE达到49.52%。通过研究火用随运行参数的变化,发现在EGR率从15%提高到20%的同时,将VVT调整到上死点后曲柄角- 85°(CA ATDC)或将VGT调整到原低速EGR回路(- 146°CA ATDC;vgt = 42.5%)。可用火用从71.22%增加到71.42%(- 146°CA ATDC;vgt = 42.5%;原始设备)至71.88%-71.58%(−146°CA ATDC;VGT = 47.5%)和72.02%-72.21%(−85°CA ATDC;vgt = 42.5%)。本研究探索了不同运行方案下的能量分布,为进一步提高整个装置的热效率提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Engine Research
International Journal of Engine Research 工程技术-工程:机械
CiteScore
6.50
自引率
16.00%
发文量
130
审稿时长
>12 weeks
期刊介绍: The International Journal of Engine Research publishes high quality papers on experimental and analytical studies of engine technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信