Francisco Mendoza-Hoffmann, Canyong Guo, Yanzhuo Song, Dandan Feng, Lingyun Yang, Kurt Wüthrich
{"title":"19F-NMR studies of the impact of different detergents and nanodiscs on the A2A adenosine receptor","authors":"Francisco Mendoza-Hoffmann, Canyong Guo, Yanzhuo Song, Dandan Feng, Lingyun Yang, Kurt Wüthrich","doi":"10.1007/s10858-023-00430-7","DOIUrl":null,"url":null,"abstract":"<div><p>For the A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>AR), a class A G-protein-coupled receptor (GPCR), reconstituted in <i>n</i>-dodecyl-<i>β</i>-D-maltoside (DDM)/cholesteryl hemisuccinate (CHS) mixed micelles, previous <sup>19</sup>F-NMR studies revealed the presence of multiple simultaneously populated conformational states. Here, we study the influence of a different detergent, lauryl maltose neopentyl glycol (LMNG) in mixed micelles with CHS, and of lipid bilayer nanodiscs on these conformational equilibria. The populations of locally different substates are pronouncedly different in DDM/CHS and LMNG/CHS micelles, whereas the A<sub>2A</sub>AR conformational manifold in LMNG/CHS micelles is closely similar to that in the lipid bilayer nanodiscs. Considering that nanodiscs represent a closer match of the natural lipid bilayer membrane, these observations support that LMNG/CHS micelles are a good choice for reconstitution trials of class A GPCRs for NMR studies in solution.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"78 1","pages":"31 - 37"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-023-00430-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For the A2A adenosine receptor (A2AAR), a class A G-protein-coupled receptor (GPCR), reconstituted in n-dodecyl-β-D-maltoside (DDM)/cholesteryl hemisuccinate (CHS) mixed micelles, previous 19F-NMR studies revealed the presence of multiple simultaneously populated conformational states. Here, we study the influence of a different detergent, lauryl maltose neopentyl glycol (LMNG) in mixed micelles with CHS, and of lipid bilayer nanodiscs on these conformational equilibria. The populations of locally different substates are pronouncedly different in DDM/CHS and LMNG/CHS micelles, whereas the A2AAR conformational manifold in LMNG/CHS micelles is closely similar to that in the lipid bilayer nanodiscs. Considering that nanodiscs represent a closer match of the natural lipid bilayer membrane, these observations support that LMNG/CHS micelles are a good choice for reconstitution trials of class A GPCRs for NMR studies in solution.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.