Daniel Maguire , Neil E. Coughlan , Marcel A.K. Jansen , Edmond P. Byrne , Fatemeh Kavousi
{"title":"Where engineering meets biology: The Computational Fluid Dynamic analysis of a stacked duckweed bioreactor","authors":"Daniel Maguire , Neil E. Coughlan , Marcel A.K. Jansen , Edmond P. Byrne , Fatemeh Kavousi","doi":"10.1016/j.aquaeng.2023.102375","DOIUrl":null,"url":null,"abstract":"<div><p>The necessity for sustainable farming practices, wastewater valorisation and circular economy applications have prompted increased interest in duckweed cultivation. As floating plants, duckweed species show rapid growth and can be cultured agri-food industry wastewater. Further, the resulting plant biomass is a valuable high-protein livestock feed and a biofuel feedstock. The development of multitiered (i.e., vertically stacked) indoor bioreactors enable reliable, high-capacity growth irrespective of seasons. Here, a Computational Fluid Dynamic (CFD) approach was applied to a pilot-scale duckweed cultivation system to provide insight into wastewater hydrodynamics to support further development and optimisation. CFD modelling and validation indicated that the pilot-scale system behaved non-ideally, with 60.1 % of the volume considered stagnant, and with surface channelling also identified. Analysis of the aspect ratio and inlet/outlet port positions of the cultivation tray enabled a 24.3 % decrease in stagnation, as well as a significant reduction in channelling, when the number of tray inlet/outlet ports was increased from two to three. Thus, the current study highlights the value of in-depth evaluation of the fluid flow using CFD, as a strategy to improve design of duckweed cultivation systems. This strategy can be further expanded to incorporate local and temporal nutrient depletion and predict duckweed growth rates.</p></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"104 ","pages":"Article 102375"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0144860923000626/pdfft?md5=fac8ada7fc1e5db8a8cc36f9410fabaf&pid=1-s2.0-S0144860923000626-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860923000626","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The necessity for sustainable farming practices, wastewater valorisation and circular economy applications have prompted increased interest in duckweed cultivation. As floating plants, duckweed species show rapid growth and can be cultured agri-food industry wastewater. Further, the resulting plant biomass is a valuable high-protein livestock feed and a biofuel feedstock. The development of multitiered (i.e., vertically stacked) indoor bioreactors enable reliable, high-capacity growth irrespective of seasons. Here, a Computational Fluid Dynamic (CFD) approach was applied to a pilot-scale duckweed cultivation system to provide insight into wastewater hydrodynamics to support further development and optimisation. CFD modelling and validation indicated that the pilot-scale system behaved non-ideally, with 60.1 % of the volume considered stagnant, and with surface channelling also identified. Analysis of the aspect ratio and inlet/outlet port positions of the cultivation tray enabled a 24.3 % decrease in stagnation, as well as a significant reduction in channelling, when the number of tray inlet/outlet ports was increased from two to three. Thus, the current study highlights the value of in-depth evaluation of the fluid flow using CFD, as a strategy to improve design of duckweed cultivation systems. This strategy can be further expanded to incorporate local and temporal nutrient depletion and predict duckweed growth rates.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints