Algebraic approach to the completeness problem for (k,n)-arcs in planes over finite fields

IF 0.9 2区 数学 Q2 MATHEMATICS
Gábor Korchmáros , Gábor P. Nagy , Tamás Szőnyi
{"title":"Algebraic approach to the completeness problem for (k,n)-arcs in planes over finite fields","authors":"Gábor Korchmáros ,&nbsp;Gábor P. Nagy ,&nbsp;Tamás Szőnyi","doi":"10.1016/j.jcta.2023.105851","DOIUrl":null,"url":null,"abstract":"<div><p>In a projective plane over a finite field, complete <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>-arcs with few characters are rare but interesting objects with several applications to finite geometry and coding theory. Since almost all known examples are large, the construction of small ones, with <em>k</em> close to the order of the plane, is considered a hard problem. A natural candidate to be a small <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>-arc with few characters is the set <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of the points of a plane curve <span><math><mi>C</mi></math></span> of degree <em>n</em> (containing no linear components) such that some line meets <span><math><mi>C</mi></math></span> transversally in the plane, i.e. in <em>n</em> pairwise distinct points. Let <span><math><mi>C</mi></math></span> be either the Hermitian curve of degree <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span>, or the rational BKS curve of degree <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></math></span> with <em>q</em> odd and <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span>. Then <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has four and seven characters, respectively. Furthermore, <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is small as both curves are either maximal or minimal. The completeness problem is investigated by an algebraic approach based on Galois theory and on the Hasse-Weil lower bound. Our main result for the Hermitian case is that <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is complete for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span>. For the rational BKS curve, <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is complete if and only if <em>r</em> is even. If <em>r</em> is odd then the uncovered points by the <span><math><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-secants to <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> are exactly the points in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> not lying in <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. Adding those points to <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> produces a complete <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-arc in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></math></span>, with <span><math><mi>k</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mi>q</mi></math></span>. The above results do not hold true for <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span> and there remain open the case <span><math><mi>r</mi><mo>=</mo><mn>3</mn></math></span> for the Hermitian curve, and the cases <span><math><mi>r</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> for the rational BKS curve. As a by product we also obtain two results of interest in the study of the Galois inverse problem for <span><math><mtext>PGL</mtext><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652300119X/pdfft?md5=d82e427ed7135cee4fd8e44a6153c333&pid=1-s2.0-S009731652300119X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652300119X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a projective plane over a finite field, complete (k,n)-arcs with few characters are rare but interesting objects with several applications to finite geometry and coding theory. Since almost all known examples are large, the construction of small ones, with k close to the order of the plane, is considered a hard problem. A natural candidate to be a small (k,n)-arc with few characters is the set Ω(C) of the points of a plane curve C of degree n (containing no linear components) such that some line meets C transversally in the plane, i.e. in n pairwise distinct points. Let C be either the Hermitian curve of degree q+1 in PG(2,q2r) with r1, or the rational BKS curve of degree q+1 in PG(2,qr) with q odd and r1. Then Ω(C) has four and seven characters, respectively. Furthermore, Ω(C) is small as both curves are either maximal or minimal. The completeness problem is investigated by an algebraic approach based on Galois theory and on the Hasse-Weil lower bound. Our main result for the Hermitian case is that Ω(C) is complete for r4. For the rational BKS curve, Ω(C) is complete if and only if r is even. If r is odd then the uncovered points by the (q+1)-secants to Ω(C) are exactly the points in PG(2,q) not lying in Ω(C). Adding those points to Ω(C) produces a complete (k,q+1)-arc in PG(2,qr), with k=qr+q. The above results do not hold true for r=2 and there remain open the case r=3 for the Hermitian curve, and the cases r=3,4 for the rational BKS curve. As a by product we also obtain two results of interest in the study of the Galois inverse problem for PGL(2,q).

用代数方法解决有限域上平面中 (k,n)-arc 的完备性问题
在有限域上的投影面中,字符数很少的完整 (k,n)-arcs 是罕见但有趣的对象,在有限几何和编码理论中有多种应用。由于几乎所有已知的例子都很大,因此构造 k 接近平面阶数的小弧被认为是一个难题。(k,n)-弧的一个自然候选点是阶数为 n 的平面曲线 C 的点(不含线性分量)的集合 Ω(C),该集合使得某条直线与 C 在平面上横向相交,即在 n 个不同的点上成对相交。假设 C 是 PG(2,q2r) 中 r≥1 的 q+1 度赫尔墨斯曲线,或者是 PG(2,qr) 中 q 为奇数且 r≥1 的 q+1 度有理 BKS 曲线,那么 Ω(C) 分别有四个和七个字符。此外,Ω(C) 很小,因为两条曲线要么是最大曲线,要么是最小曲线。我们用基于伽罗瓦理论和哈塞-韦尔下界的代数方法研究了完备性问题。对于赫米特曲线,我们的主要结果是,当 r≥4 时,Ω(C) 是完备的。对于有理 BKS 曲线,当且仅当 r 为偶数时,Ω(C) 是完整的。如果 r 为奇数,那么通过 (q+1)-secants 到 Ω(C) 的未覆盖点正是 PG(2,q) 中不位于 Ω(C) 的点。将这些点添加到 Ω(C) 会在 PG(2,qr) 中产生一个完整的 (k,q+1)- 弧,k=qr+q。上述结果在 r=2 时并不成立,赫米特曲线的 r=3 和有理 BKS 曲线的 r=3,4 两种情况仍未解决。作为副产品,我们还得到了两个对研究 PGL(2,q) 的伽罗瓦逆问题很有意义的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信