Hao Jiang , Jing’ai Shao , Qiang Hu , Youjian Zhu , Wei Cheng , Junjie Zhang , Tingting Fan , Jie Yu , Haiping Yang , Xiong Zhang , Hanping Chen
{"title":"Carbon black production characteristics and mechanisms from pyrolysis of rubbers","authors":"Hao Jiang , Jing’ai Shao , Qiang Hu , Youjian Zhu , Wei Cheng , Junjie Zhang , Tingting Fan , Jie Yu , Haiping Yang , Xiong Zhang , Hanping Chen","doi":"10.1016/j.fuproc.2023.108011","DOIUrl":null,"url":null,"abstract":"<div><p>Pyrolysis is a promising way to treat the waste tires for high value carbon black production. However, the carbon black formation mechanism is still unclear due to the complex decomposition and polymerization reactions during the pyrolysis of tire components. In this study, the production behavior, characters, and mechanism of carbon black from pyrolysis of natural rubber (NR), butadiene rubber (BR), and styrene-butadiene rubber (SBR) were investigated. The yield of carbon black was increased from 20.8%–24.4% to 47.9%–56.7% with the increase of pyrolysis temperature from 1100 to 1300°C. Although the carbon black production yield from NR was lower than that of BR and SBR at 1300°C, the graphitization degree (<em>I</em><sub>D</sub>/<em>I</em><sub>G</sub> = 2.22), microcrystal length (3.17 nm) and mean particle diameter (90.3 nm) of the carbon black derived from NR were the highest. The volatile evolution, carbon black nucleation mechanisms were revealed by reactive force-field molecular dynamics simulations. The pyrolysis of BR and SBR generated more C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>3</sub>⋅, long carbon-chains and cyclic molecules than NR, which probably resulted in a higher carbon black yield than NR. With few defect borders, regular stacking and wrapping of the aromatic layers, the carbon black from NR exhibited more ordered nucleation and high graphitization degree.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"253 ","pages":"Article 108011"},"PeriodicalIF":7.2000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382023003594/pdfft?md5=801d242f62e6914a33b9c44ef0b8928a&pid=1-s2.0-S0378382023003594-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382023003594","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Pyrolysis is a promising way to treat the waste tires for high value carbon black production. However, the carbon black formation mechanism is still unclear due to the complex decomposition and polymerization reactions during the pyrolysis of tire components. In this study, the production behavior, characters, and mechanism of carbon black from pyrolysis of natural rubber (NR), butadiene rubber (BR), and styrene-butadiene rubber (SBR) were investigated. The yield of carbon black was increased from 20.8%–24.4% to 47.9%–56.7% with the increase of pyrolysis temperature from 1100 to 1300°C. Although the carbon black production yield from NR was lower than that of BR and SBR at 1300°C, the graphitization degree (ID/IG = 2.22), microcrystal length (3.17 nm) and mean particle diameter (90.3 nm) of the carbon black derived from NR were the highest. The volatile evolution, carbon black nucleation mechanisms were revealed by reactive force-field molecular dynamics simulations. The pyrolysis of BR and SBR generated more C2H2, C2H3⋅, long carbon-chains and cyclic molecules than NR, which probably resulted in a higher carbon black yield than NR. With few defect borders, regular stacking and wrapping of the aromatic layers, the carbon black from NR exhibited more ordered nucleation and high graphitization degree.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.