A note on sufficient dimension reduction with post dimension reduction statistical inference

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Kyongwon Kim
{"title":"A note on sufficient dimension reduction with post dimension reduction statistical inference","authors":"Kyongwon Kim","doi":"10.1007/s10182-023-00491-x","DOIUrl":null,"url":null,"abstract":"<p>Sufficient dimension reduction is a widely used tool to extract core information hidden in high-dimensional data for classifying, clustering, and predicting response variables. Various dimension reduction methods and their applications have been introduced in the past decades. Data analysis using sufficient dimension reduction involves two steps: dimension reduction and model estimation. However, when we implement the two-step modeling process, we consider the estimated sufficient predictor as a true predictor variable and proceed to the model development step, which includes statistical inference such as estimating confidence intervals and performing hypothesis tests. However, the outcome obtained using this method is by no means complete because it contains errors only from the model estimation step. Therefore, post dimension reduction inference is an important topic because it is essential to consider errors from sufficient dimension reduction. In this paper, we review the fundamentals of sufficient dimension reduction methods. Then, we introduce an intuitive and heuristic approach for the recently developed post dimension reduction statistical inference.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-023-00491-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Sufficient dimension reduction is a widely used tool to extract core information hidden in high-dimensional data for classifying, clustering, and predicting response variables. Various dimension reduction methods and their applications have been introduced in the past decades. Data analysis using sufficient dimension reduction involves two steps: dimension reduction and model estimation. However, when we implement the two-step modeling process, we consider the estimated sufficient predictor as a true predictor variable and proceed to the model development step, which includes statistical inference such as estimating confidence intervals and performing hypothesis tests. However, the outcome obtained using this method is by no means complete because it contains errors only from the model estimation step. Therefore, post dimension reduction inference is an important topic because it is essential to consider errors from sufficient dimension reduction. In this paper, we review the fundamentals of sufficient dimension reduction methods. Then, we introduce an intuitive and heuristic approach for the recently developed post dimension reduction statistical inference.

Abstract Image

关于充分降维与降维后统计推断的说明
充分降维是一种广泛应用的工具,可提取隐藏在高维数据中的核心信息,用于分类、聚类和预测响应变量。在过去的几十年里,人们提出了各种降维方法及其应用。充分降维的数据分析包括两个步骤:降维和模型估计。然而,当我们实施两步建模过程时,我们会将估计出的充分预测变量视为真正的预测变量,并进入模型开发步骤,其中包括统计推断,如估计置信区间和进行假设检验。然而,使用这种方法得到的结果并不完整,因为它只包含了模型估计步骤中的误差。因此,后降维推断是一个重要课题,因为必须考虑充分降维带来的误差。本文回顾了充分降维方法的基本原理。然后,我们将为最近开发的后降维统计推断介绍一种直观的启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信