{"title":"On varieties with Ulrich twisted tangent bundles","authors":"Angelo Felice Lopez, Debaditya Raychaudhury","doi":"10.1007/s10231-023-01397-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study varieties <span>\\(X \\subseteq {\\mathbb {P}}^N\\)</span> of dimension <i>n</i> such that <span>\\(T_X(k)\\)</span> is an Ulrich vector bundle for some <span>\\(k \\in {\\mathbb {Z}}\\)</span>. First we give a sharp bound for <i>k</i> in the case of curves. Then we show that <span>\\(k \\le n+1\\)</span> if <span>\\(2 \\le n \\le 12\\)</span>. We classify the pairs <span>\\((X,{\\mathcal {O}}_X(1))\\)</span> for <span>\\(k=1\\)</span> and we show that, for <span>\\(n \\ge 4\\)</span>, the case<span>\\(k=2\\)</span> does not occur.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"203 3","pages":"1159 - 1193"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01397-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01397-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study varieties \(X \subseteq {\mathbb {P}}^N\) of dimension n such that \(T_X(k)\) is an Ulrich vector bundle for some \(k \in {\mathbb {Z}}\). First we give a sharp bound for k in the case of curves. Then we show that \(k \le n+1\) if \(2 \le n \le 12\). We classify the pairs \((X,{\mathcal {O}}_X(1))\) for \(k=1\) and we show that, for \(n \ge 4\), the case\(k=2\) does not occur.
我们研究维数为 n 的 varieties \(X \subseteq {\mathbb {P}}^N\) such that \(T_X(k)\) is an Ulrich vector bundle for some \(k \in {\mathbb {Z}}\).首先,我们给出了曲线情况下 k 的尖锐边界。然后我们证明,如果\(2 \le n \le 12\) ,那么\(k \le n+1\) 就是\(k \le n+1\) 。我们对k=1的情况下的对((X,{mathcal {O}}_X(1))\) 进行了分类,并证明了在n=4的情况下,k=2的情况不会出现。
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.