{"title":"Micromixing within microfluidic devices: Fundamentals, design, and fabrication","authors":"Shuxiang Cai, Yawen Jin, Yun Lin, Yingzheng He, Peifan Zhang, Zhixing Ge, Wenguang Yang","doi":"10.1063/5.0178396","DOIUrl":null,"url":null,"abstract":"As one of the hot spots in the field of microfluidic chip research, micromixers have been widely used in chemistry, biology, and medicine due to their small size, fast response time, and low reagent consumption. However, at low Reynolds numbers, the fluid motion relies mainly on the diffusive motion of molecules under laminar flow conditions. The detrimental effect of laminar flow leads to difficulties in achieving rapid and efficient mixing of fluids in microchannels. Therefore, it is necessary to enhance fluid mixing by employing some external means. In this paper, the classification and mixing principles of passive (T-type, Y-type, obstructed, serpentine, three-dimensional) and active (acoustic, electric, pressure, thermal, magnetic field) micromixers are reviewed based on the presence or absence of external forces in the micromixers, and some experiments and applications of each type of micromixer are briefly discussed. Finally, the future development trends of micromixers are summarized.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0178396","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
As one of the hot spots in the field of microfluidic chip research, micromixers have been widely used in chemistry, biology, and medicine due to their small size, fast response time, and low reagent consumption. However, at low Reynolds numbers, the fluid motion relies mainly on the diffusive motion of molecules under laminar flow conditions. The detrimental effect of laminar flow leads to difficulties in achieving rapid and efficient mixing of fluids in microchannels. Therefore, it is necessary to enhance fluid mixing by employing some external means. In this paper, the classification and mixing principles of passive (T-type, Y-type, obstructed, serpentine, three-dimensional) and active (acoustic, electric, pressure, thermal, magnetic field) micromixers are reviewed based on the presence or absence of external forces in the micromixers, and some experiments and applications of each type of micromixer are briefly discussed. Finally, the future development trends of micromixers are summarized.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...