Dual-plasmid interactions stimulate the accumulation of valencene in Saccharomyces cerevisiae

Chaoyi Zhu, Shengliang Cai, Peiling Liu, Dongying Chen, Jingtao Zhou, Min Zhuo, Shuang Li
{"title":"Dual-plasmid interactions stimulate the accumulation of valencene in Saccharomyces cerevisiae","authors":"Chaoyi Zhu,&nbsp;Shengliang Cai,&nbsp;Peiling Liu,&nbsp;Dongying Chen,&nbsp;Jingtao Zhou,&nbsp;Min Zhuo,&nbsp;Shuang Li","doi":"10.1016/j.biotno.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Plasmids are one of the most commonly used basic tools in the construction of microbial cell factories, the use of which individually or in pairs play an important role in the expression of exogenous gene modules. However, little attention has been paid to the interactions of plasmid-plasmid and plasmid-host in the widespread use of the double plasmid system. In this study, we demonstrated that dual-plasmid interactions facilitated to cell growth and product accumulation in <em>Saccharomyces cerevisiae</em>. The strain containing both the expression plasmid pEV (a plasmid carrying the gene encoding valencene synthase) and the assistant plasmid pI (an empty plasmid expressing no extra gene) showed a significant improvement in relative growth rate, biomass and valencene production compared to the strain containing only the pEV plasmid. The transcriptional level analysis revealed an up-regulated expression of specific gene on the expression plasmid pEV stimulated by the assistant plasmid pI in the dual-plasmid interactions. Further investigations demonstrated the essential roles of the promoters of the expression plasmid pEV and the CEN/ARS element of the assistant plasmid pI in the dual-plasmid interactions. Combined with the results of predicted nucleosome occupancy, a response model of interaction based on the key T(n)C and CEN/ARS element was established. Moreover, the transformation order of the two plasmids significantly affected the response effect, implying the dominance of plasmid pI in the dual-plasmid interactions. Our finding first demonstrated that dual plasmids regulate the gene expression through spatial interactions at DNA sequences level, which provides a new perspective for the development of microbial cell factories in future.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 127-134"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906923000168/pdfft?md5=2d34e1efc0f7c67c058f46ddba2d6840&pid=1-s2.0-S2665906923000168-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906923000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmids are one of the most commonly used basic tools in the construction of microbial cell factories, the use of which individually or in pairs play an important role in the expression of exogenous gene modules. However, little attention has been paid to the interactions of plasmid-plasmid and plasmid-host in the widespread use of the double plasmid system. In this study, we demonstrated that dual-plasmid interactions facilitated to cell growth and product accumulation in Saccharomyces cerevisiae. The strain containing both the expression plasmid pEV (a plasmid carrying the gene encoding valencene synthase) and the assistant plasmid pI (an empty plasmid expressing no extra gene) showed a significant improvement in relative growth rate, biomass and valencene production compared to the strain containing only the pEV plasmid. The transcriptional level analysis revealed an up-regulated expression of specific gene on the expression plasmid pEV stimulated by the assistant plasmid pI in the dual-plasmid interactions. Further investigations demonstrated the essential roles of the promoters of the expression plasmid pEV and the CEN/ARS element of the assistant plasmid pI in the dual-plasmid interactions. Combined with the results of predicted nucleosome occupancy, a response model of interaction based on the key T(n)C and CEN/ARS element was established. Moreover, the transformation order of the two plasmids significantly affected the response effect, implying the dominance of plasmid pI in the dual-plasmid interactions. Our finding first demonstrated that dual plasmids regulate the gene expression through spatial interactions at DNA sequences level, which provides a new perspective for the development of microbial cell factories in future.

双质粒相互作用促进缬草烯在酿酒酵母中的积累
质粒是构建微生物细胞工厂最常用的基本工具之一,单独或成对使用质粒对外源基因模块的表达起着重要作用。然而,在双质粒系统广泛使用的过程中,人们很少关注质粒-质粒和质粒-宿主之间的相互作用。在这项研究中,我们证明了双质粒相互作用有助于酿酒酵母的细胞生长和产物积累。与仅含有 pEV 质粒的菌株相比,同时含有表达质粒 pEV(携带缬烯烃合成酶编码基因的质粒)和辅助质粒 pI(不表达额外基因的空质粒)的菌株在相对生长率、生物量和缬烯烃产量方面都有显著提高。转录水平分析表明,在双质粒相互作用中,表达质粒 pEV 上的特定基因在辅助质粒 pI 的刺激下表达上调。进一步的研究表明,表达质粒pEV的启动子和辅助质粒pI的CEN/ARS元件在双质粒相互作用中起着至关重要的作用。结合预测的核小体占位结果,建立了基于关键 T(n)C 和 CEN/ARS 元件的相互作用响应模型。此外,两个质粒的转化顺序会显著影响反应效果,这意味着质粒 pI 在双质粒相互作用中占主导地位。我们的发现首次证明了双质粒通过DNA序列水平的空间相互作用来调控基因表达,这为今后开发微生物细胞工厂提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信