{"title":"Integrated analysis of whole genome and transcriptome sequencing uncovers genetic differences between Zi goose and Xianghai flying goose","authors":"Hongyu Ni, Yonghong Zhang, Yuwei Yang, Yijing Yin, Jing Ren, Qingxing Xiao, Puze Zhao, Xiaoqing Hong, Ziyi Zhang, Benhai Cui, Hao Sun, Xueqi Sun, Yumei Li","doi":"10.1111/age.13388","DOIUrl":null,"url":null,"abstract":"<p>Zi goose is a famous indigenous breed originating from northeast China with high annual egg production. Xianghai flying goose is a composite breed and is bred by crosses of the wild swan goose and the Zi goose. Our previous study revealed significant differences in muscle fiber characteristics between the two populations. Here, we aimed to reveal the underlying genetic basis of the above phenotype differences through whole-genome and transcriptome analysis. A total of 20 blood samples (10 Zi geese and 10 Xianghai flying geese) were used for whole genome sequencing, and eight breast muscle tissue samples (four Zi geese and four Xianghai flying geese) were used for RNA sequencing. Using the <i>F</i><sub>ST</sub> and XP-EHH analysis, some highly differentiated genome regions annotated with egg production (<i>RORB</i>, <i>WNT4</i>, <i>BMPR1B</i>) and breast muscle development (<i>WNT7B</i>) between the two populations were detected. RNA-sequencing analysis revealed differentially expressed genes related to muscle development (<i>IGF1</i>, <i>PAX7</i>). Moreover, several genes were detected by both genome and transcriptome analysis, and some of them were reported to be associated with muscle growth (<i>SLIT2</i>, <i>PREX1</i>) and intramuscular fat (<i>COL6A1</i>). These findings will help researchers better understand the genetic basis related to egg production and muscle development in geese.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zi goose is a famous indigenous breed originating from northeast China with high annual egg production. Xianghai flying goose is a composite breed and is bred by crosses of the wild swan goose and the Zi goose. Our previous study revealed significant differences in muscle fiber characteristics between the two populations. Here, we aimed to reveal the underlying genetic basis of the above phenotype differences through whole-genome and transcriptome analysis. A total of 20 blood samples (10 Zi geese and 10 Xianghai flying geese) were used for whole genome sequencing, and eight breast muscle tissue samples (four Zi geese and four Xianghai flying geese) were used for RNA sequencing. Using the FST and XP-EHH analysis, some highly differentiated genome regions annotated with egg production (RORB, WNT4, BMPR1B) and breast muscle development (WNT7B) between the two populations were detected. RNA-sequencing analysis revealed differentially expressed genes related to muscle development (IGF1, PAX7). Moreover, several genes were detected by both genome and transcriptome analysis, and some of them were reported to be associated with muscle growth (SLIT2, PREX1) and intramuscular fat (COL6A1). These findings will help researchers better understand the genetic basis related to egg production and muscle development in geese.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.