{"title":"Fuel build-up promotes an increase in fire severity of reburned areas in fire-prone ecosystems of the western Mediterranean Basin","authors":"José Manuel Fernández-Guisuraga, Leonor Calvo","doi":"10.1186/s42408-023-00232-0","DOIUrl":null,"url":null,"abstract":"Fire-vegetation feedbacks can modulate the global change effects conducive to extreme fire behavior and high fire severity of subsequent wildfires in reburn areas by altering the composition, flammability traits, and spatial arrangement of fuels. Repeated, high-severity wildfires at short return intervals may trigger long-term vegetation state transitions. However, empirical evidence about these feedbacks is absent in fire-prone ecosystems of the western Mediterranean Basin, where the response of fire activity has been enhanced by contemporary socioeconomic and land-use changes. Here, we evaluated whether fire severity differs between initial burns and subsequent wildfires in reburn areas (fire-free periods = 10–15 years) of maritime pine and Aleppo pine forests, holm oak woodlands, and shrublands in the western Mediterranean Basin, and whether there is a relationship between the severity of such interactive wildfire disturbances. We also tested how the type of ecosystem and changes in vegetation structure after the initial wildfires influence these relationships. We leveraged Landsat-based fire severity estimates for initial and last wildfires using the Relativized Burn Ratio (RBR) and Light Detection and Ranging (LiDAR) data acquired before the last wildfire. Fire severity of the last wildfire was significantly higher than that of the initial wildfire for each dominant ecosystem type in reburn areas. These differences were very pronounced in maritime pine forests and shrublands. For consistency, the same patterns were evidenced for the fire severity in reburn and first-entry areas of the last wildfire for each dominant ecosystem type. Fire severity of the last wildfire in forests and woodlands (particularly maritime pine-dominated) raised with increasing severity of the previous wildfire to a greater extent than in shrublands. Pre-fire fuel density in the lower vegetation strata (up to 4 m high in maritime and Aleppo pine forests, as well as in shrublands, and up to 2 m high in holm oak forests) was significantly higher in reburn than in first-entry areas of the last wildfire. Our results suggest that land managers should promote more fire-resistant landscapes to high fire severity by minimizing fuel build-up and thus fire hazard through pre-fire fuel reduction treatments such as prescribed burning.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s42408-023-00232-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fire-vegetation feedbacks can modulate the global change effects conducive to extreme fire behavior and high fire severity of subsequent wildfires in reburn areas by altering the composition, flammability traits, and spatial arrangement of fuels. Repeated, high-severity wildfires at short return intervals may trigger long-term vegetation state transitions. However, empirical evidence about these feedbacks is absent in fire-prone ecosystems of the western Mediterranean Basin, where the response of fire activity has been enhanced by contemporary socioeconomic and land-use changes. Here, we evaluated whether fire severity differs between initial burns and subsequent wildfires in reburn areas (fire-free periods = 10–15 years) of maritime pine and Aleppo pine forests, holm oak woodlands, and shrublands in the western Mediterranean Basin, and whether there is a relationship between the severity of such interactive wildfire disturbances. We also tested how the type of ecosystem and changes in vegetation structure after the initial wildfires influence these relationships. We leveraged Landsat-based fire severity estimates for initial and last wildfires using the Relativized Burn Ratio (RBR) and Light Detection and Ranging (LiDAR) data acquired before the last wildfire. Fire severity of the last wildfire was significantly higher than that of the initial wildfire for each dominant ecosystem type in reburn areas. These differences were very pronounced in maritime pine forests and shrublands. For consistency, the same patterns were evidenced for the fire severity in reburn and first-entry areas of the last wildfire for each dominant ecosystem type. Fire severity of the last wildfire in forests and woodlands (particularly maritime pine-dominated) raised with increasing severity of the previous wildfire to a greater extent than in shrublands. Pre-fire fuel density in the lower vegetation strata (up to 4 m high in maritime and Aleppo pine forests, as well as in shrublands, and up to 2 m high in holm oak forests) was significantly higher in reburn than in first-entry areas of the last wildfire. Our results suggest that land managers should promote more fire-resistant landscapes to high fire severity by minimizing fuel build-up and thus fire hazard through pre-fire fuel reduction treatments such as prescribed burning.
期刊介绍:
Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to:
Ecology (physical and biological fire effects, fire regimes, etc.)
Social science (geography, sociology, anthropology, etc.)
Fuel
Fire science and modeling
Planning and risk management
Law and policy
Fire management
Inter- or cross-disciplinary fire-related topics
Technology transfer products.