MXene-Interconnected Two-Terminal, Mechanically-Stacked Perovskite/Silicon Tandem Solar Cell with High Efficiency

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianjiao Han, Weidong Zhu, Tianran Wang, Mei Yang, Yuanbo Zhou, He Xi, Peng Zhong, Dazheng Chen, Jincheng Zhang, Chunfu Zhang, Yue Hao
{"title":"MXene-Interconnected Two-Terminal, Mechanically-Stacked Perovskite/Silicon Tandem Solar Cell with High Efficiency","authors":"Tianjiao Han,&nbsp;Weidong Zhu,&nbsp;Tianran Wang,&nbsp;Mei Yang,&nbsp;Yuanbo Zhou,&nbsp;He Xi,&nbsp;Peng Zhong,&nbsp;Dazheng Chen,&nbsp;Jincheng Zhang,&nbsp;Chunfu Zhang,&nbsp;Yue Hao","doi":"10.1002/adfm.202311679","DOIUrl":null,"url":null,"abstract":"<p>Two-terminal, mechanically-stacked perovskite/silicon tandem solar cells offer a feasible way to achieve power conversion efficiencies (PCEs) of over 35%, provided that the state-of-the-art industrial silicon solar cells and perovskite solar cells (PSCs) are fully compatible with one another. Herein, two-terminal, mechanically-stacked perovskite/silicon tandem solar cells are developed by mechanically interconnecting semitransparent PSCs and TOPCon solar cells with a MXene interlayer. The semitransparent PSCs are made from wide-bandgap perovskite Cs<sub>0.15</sub>FA<sub>0.65</sub>MA<sub>0.20</sub>Pb(I<sub>0.80</sub>Br<sub>0.20</sub>)<sub>3</sub> films. Furthermore, the co-additives KPF<sub>6</sub> and CH<sub>3</sub>NH<sub>3</sub>Cl(MACl) are employed to reduce grain boundaries and intragranular defects in the perovskite, boosting the PCE of the semitransparent PSCs to a record-high value of 20.96% under reverse scan (RS) through a reduction in non-radiative recombination probability. These optimized semitransparent PSCs are then employed in MXene-interconnected two-terminal, mechanically-stacked tandem solar cells. The enhanced interfacial carrier transportation, with minimal influence on light transmission, imparted by the MXene flakes allows the tandem solar cells to achieve a stabilized PCE of 29.65%. The tandem cells also exhibit acceptable operational stability and are able to retain ≈93% and 92% of their initial PCEs after 120 min of continuous illumination or storage in ambient air for 1000 h, respectively.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 12","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202311679","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-terminal, mechanically-stacked perovskite/silicon tandem solar cells offer a feasible way to achieve power conversion efficiencies (PCEs) of over 35%, provided that the state-of-the-art industrial silicon solar cells and perovskite solar cells (PSCs) are fully compatible with one another. Herein, two-terminal, mechanically-stacked perovskite/silicon tandem solar cells are developed by mechanically interconnecting semitransparent PSCs and TOPCon solar cells with a MXene interlayer. The semitransparent PSCs are made from wide-bandgap perovskite Cs0.15FA0.65MA0.20Pb(I0.80Br0.20)3 films. Furthermore, the co-additives KPF6 and CH3NH3Cl(MACl) are employed to reduce grain boundaries and intragranular defects in the perovskite, boosting the PCE of the semitransparent PSCs to a record-high value of 20.96% under reverse scan (RS) through a reduction in non-radiative recombination probability. These optimized semitransparent PSCs are then employed in MXene-interconnected two-terminal, mechanically-stacked tandem solar cells. The enhanced interfacial carrier transportation, with minimal influence on light transmission, imparted by the MXene flakes allows the tandem solar cells to achieve a stabilized PCE of 29.65%. The tandem cells also exhibit acceptable operational stability and are able to retain ≈93% and 92% of their initial PCEs after 120 min of continuous illumination or storage in ambient air for 1000 h, respectively.

Abstract Image

Abstract Image

Abstract Image

具有高能效的 MXene 互联双端、机械叠层型过氧化物/硅串联太阳能电池
如果最先进的工业硅太阳能电池和光致抗蚀剂太阳能电池(PSCs)能够完全兼容,那么双端机械堆叠的光致抗蚀剂/硅串联太阳能电池为实现 35% 以上的功率转换效率(PCEs)提供了一种可行的方法。在本文中,通过使用 MXene 中间层将半透明 PSC 和 TOPCon 太阳能电池进行机械互连,开发出了双端、机械堆叠的透辉石/硅串联太阳能电池。半透明 PSC 由宽带隙透辉石 Cs0.15FA0.65MA0.20Pb(I0.80Br0.20)3 薄膜制成。此外,还采用了共添加剂 KPF6 和 CH3NH3Cl(MACl)来减少透辉石中的晶界和晶粒内缺陷,通过降低非辐射重组概率,将半透明 PSC 的 PCE 提高到了反向扫描 (RS) 下的 20.96% 的创纪录高值。随后,这些经过优化的半透明 PSCs 被应用于 MXene 互连双端机械堆叠串联太阳能电池中。MXene 薄片增强了界面载流子传输,对透光率的影响极小,从而使串联太阳能电池的 PCE 稳定在 29.65%。串联电池还表现出可接受的运行稳定性,在连续光照 120 分钟或在环境空气中存放 1000 小时后,其初始 PCE 分别能保持≈93% 和 92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信