A novel convolutional neural network for identification of retinal layers using sliced optical coherence tomography images

Akshat Tulsani , Jeh Patel , Preetham Kumar , Veena Mayya , Pavithra K.C. , Geetha M. , Sulatha V. Bhandary , Sameena Pathan
{"title":"A novel convolutional neural network for identification of retinal layers using sliced optical coherence tomography images","authors":"Akshat Tulsani ,&nbsp;Jeh Patel ,&nbsp;Preetham Kumar ,&nbsp;Veena Mayya ,&nbsp;Pavithra K.C. ,&nbsp;Geetha M. ,&nbsp;Sulatha V. Bhandary ,&nbsp;Sameena Pathan","doi":"10.1016/j.health.2023.100289","DOIUrl":null,"url":null,"abstract":"<div><p>Retinal imaging is crucial for observing the retina and accurately diagnosing pathological problems. Optical Coherence Tomography (OCT) has been a transformative breakthrough for developing high-resolution cross-sectional images. It is imperative to delineate the multiple layers of the retina for a proper diagnosis. A novel segmentation-based approach is introduced in this study to identify seven distinct layers of the retina using OCT images. The developed approach presents SliceOCTNet, a customized U-shaped Convolutional Neural Network (CNN) that introduces group normalization and intricate skip connections. Paired alongside a hybrid loss function, the SliceOCTNet outperformed most state-of-the-art approaches. The introduction of Group Normalization in SliceOCTNet stabilized the model and improved layer identification even when working with small datasets. The use of skip connections also contributed to an improvement in the spatial outlook of the model. Implementing a hybrid loss function addresses the class imbalance problem in the dataset. Duke University’s spectral-domain optical coherence tomography (SD-OCT) B-scan dataset of healthy and Diabetic Macular Edema (DME) afflicted patients was utilized to train and evaluate the SliceOCTNet. The model accurately recognizes the seven layers of the retina. It can achieve a high dice coefficient value of 0.941 and refine the segmentation process to a higher level of precision.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100289"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001569/pdfft?md5=9ad0b8302c3b2e9935316e85786b0565&pid=1-s2.0-S2772442523001569-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal imaging is crucial for observing the retina and accurately diagnosing pathological problems. Optical Coherence Tomography (OCT) has been a transformative breakthrough for developing high-resolution cross-sectional images. It is imperative to delineate the multiple layers of the retina for a proper diagnosis. A novel segmentation-based approach is introduced in this study to identify seven distinct layers of the retina using OCT images. The developed approach presents SliceOCTNet, a customized U-shaped Convolutional Neural Network (CNN) that introduces group normalization and intricate skip connections. Paired alongside a hybrid loss function, the SliceOCTNet outperformed most state-of-the-art approaches. The introduction of Group Normalization in SliceOCTNet stabilized the model and improved layer identification even when working with small datasets. The use of skip connections also contributed to an improvement in the spatial outlook of the model. Implementing a hybrid loss function addresses the class imbalance problem in the dataset. Duke University’s spectral-domain optical coherence tomography (SD-OCT) B-scan dataset of healthy and Diabetic Macular Edema (DME) afflicted patients was utilized to train and evaluate the SliceOCTNet. The model accurately recognizes the seven layers of the retina. It can achieve a high dice coefficient value of 0.941 and refine the segmentation process to a higher level of precision.

利用切片光学相干断层扫描图像识别视网膜层的新型卷积神经网络
视网膜成像对于观察视网膜和准确诊断病理问题至关重要。光学相干断层扫描(OCT)在开发高分辨率横截面图像方面取得了突破性进展。为了进行正确诊断,必须对视网膜的多个层次进行划分。本研究引入了一种基于分割的新方法,利用 OCT 图像识别视网膜的七个不同层。所开发的方法采用了 SliceOCTNet,这是一种定制的 U 型卷积神经网络(CNN),引入了组归一化和复杂的跳过连接。在混合损失函数的配合下,SliceOCTNet 的表现优于大多数最先进的方法。在 SliceOCTNet 中引入组归一化后,即使在处理小型数据集时,也能稳定模型并改进层识别。跳转连接的使用也有助于改善模型的空间前景。采用混合损失函数解决了数据集中的类不平衡问题。杜克大学的光谱域光学相干断层扫描(SD-OCT)B-扫描健康和糖尿病黄斑水肿(DME)患者数据集被用来训练和评估 SliceOCTNet。该模型能准确识别视网膜的七个层次。它的骰子系数高达 0.941,并能将分割过程细化到更高的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信