Andries Heida , Theo van Dijk , Marieke Smit , Martijn Koehorst , Mirjam Koster , Niels Kloosterhuis , Rick Havinga , Vincent W. Bloks , Justina C. Wolters , Alain de Bruin , Jan Albert Kuivenhoven , Jan Freark de Boer , Folkert Kuipers , Bart van de Sluis
{"title":"Changes in bile acid composition are correlated with reduced intestinal cholesterol uptake in intestine-specific WASH-deficient mice","authors":"Andries Heida , Theo van Dijk , Marieke Smit , Martijn Koehorst , Mirjam Koster , Niels Kloosterhuis , Rick Havinga , Vincent W. Bloks , Justina C. Wolters , Alain de Bruin , Jan Albert Kuivenhoven , Jan Freark de Boer , Folkert Kuipers , Bart van de Sluis","doi":"10.1016/j.bbalip.2023.159445","DOIUrl":null,"url":null,"abstract":"<div><p>The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex is a pentameric protein complex localized at endosomes, where it facilitates the transport of numerous receptors from endosomes toward the plasma membrane. Recent studies have shown that the WASH complex plays an essential role in cholesterol and glucose homeostasis in humans and mice. To investigate the physiological importance of intestinal WASH, we ablated the WASH component WASHC1 specifically in murine enterocytes. Male and female intestine-specific WASHC1-deficient mice (<em>Washc1</em><sup>IKO</sup>) were challenged with either a standard chow diet or a high-cholesterol (1.25 %) diet (HCD). <em>Washc1</em><sup>IKO</sup> mice fed a standard diet did not present any apparent phenotype, but when fed an HCD, their hepatic cholesterol levels were ~ 50 % lower compared to those observed in control mice. The intestinal cholesterol absorption was almost 2-fold decreased in <em>Washc1</em><sup>IKO</sup> mice, which translated into increased fecal neutral sterol loss. The intestinal expression of cholesterogenic genes, such as <em>Hmgcs1</em>, <em>Hmgcr</em>, and <em>Ldlr</em>, was significantly higher in <em>Washc1</em><sup>IKO</sup> mice than in control mice and correlated with increased whole-body de novo cholesterol synthesis, likely to compensate for impaired intestinal cholesterol absorption. Unexpectedly, the ratio of biliary 12α−/non-12α-hydroxylated bile acids (BAs) was decreased in <em>Washc1</em><sup>IKO</sup> mice and reversing this reduced ratio by feeding the mice with the HCD supplemented with 0.5 % (<em>w</em>/w) sodium cholate normalized the improvement of hepatic cholesterol levels in <em>Washc1</em><sup>IKO</sup> mice. Our data indicate that the intestinal WASH complex plays an important role in intestinal cholesterol absorption, likely by modulating biliary BA composition.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 2","pages":"Article 159445"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198123001695/pdfft?md5=85fb9a3ec7f964341f8d00bd741080ae&pid=1-s2.0-S1388198123001695-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198123001695","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex is a pentameric protein complex localized at endosomes, where it facilitates the transport of numerous receptors from endosomes toward the plasma membrane. Recent studies have shown that the WASH complex plays an essential role in cholesterol and glucose homeostasis in humans and mice. To investigate the physiological importance of intestinal WASH, we ablated the WASH component WASHC1 specifically in murine enterocytes. Male and female intestine-specific WASHC1-deficient mice (Washc1IKO) were challenged with either a standard chow diet or a high-cholesterol (1.25 %) diet (HCD). Washc1IKO mice fed a standard diet did not present any apparent phenotype, but when fed an HCD, their hepatic cholesterol levels were ~ 50 % lower compared to those observed in control mice. The intestinal cholesterol absorption was almost 2-fold decreased in Washc1IKO mice, which translated into increased fecal neutral sterol loss. The intestinal expression of cholesterogenic genes, such as Hmgcs1, Hmgcr, and Ldlr, was significantly higher in Washc1IKO mice than in control mice and correlated with increased whole-body de novo cholesterol synthesis, likely to compensate for impaired intestinal cholesterol absorption. Unexpectedly, the ratio of biliary 12α−/non-12α-hydroxylated bile acids (BAs) was decreased in Washc1IKO mice and reversing this reduced ratio by feeding the mice with the HCD supplemented with 0.5 % (w/w) sodium cholate normalized the improvement of hepatic cholesterol levels in Washc1IKO mice. Our data indicate that the intestinal WASH complex plays an important role in intestinal cholesterol absorption, likely by modulating biliary BA composition.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.