Min Yang, Xianghui Li, Weixiang Chao, Xiang Gao, Huan Wang, Lu Lu
{"title":"Renewable biosynthesis of isoprene from wastewater through a synthetic biology approach: the role of individual organic compounds","authors":"Min Yang, Xianghui Li, Weixiang Chao, Xiang Gao, Huan Wang, Lu Lu","doi":"10.1007/s11783-024-1788-3","DOIUrl":null,"url":null,"abstract":"<p>The biosynthesis of isoprene offers a more sustainable alternative to fossil fuel-based approaches, yet its success has been largely limited to pure organic compounds and the cost remains a challenge. This study proposes a waste-to-wealth strategy for isoprene biosynthesis utilizing genetically engineered <i>E. coli</i> bacteria to convert organic waste from real food wastewater. The impact of organic compounds present in wastewater on <i>E. coli</i> growth and isoprene production was systematically investigated. The results demonstrated that with filtration pretreatment of wastewater, isoprene yield, and production achieved 115 mg/g COD and 7.1 mg/(L·h), respectively. Moreover, even without pretreatment, isoprene yield only decreased by ∼ 24%, indicating promising scalability. Glucose, maltose, glycerol, and lactate are effective substrates for isoprene biosynthesis, whereas starch, protein, and acetate do not support <i>E. coli</i> growth. The optimum C/N ratio for isoprene production was found to be 8:1. Furthermore, augmenting essential nutrients in wastewater elevated the isoprene yield increased to 159 mg/g COD. The wastewater biosynthesis significantly reduced the cost (44%–53% decrease, <i>p</i>-value < 0.01) and CO<sub>2</sub> emission (46%–55% decrease, <i>p</i>-value < 0.01) compared with both sugar fermentation and fossil fuel–based refining. This study introduced a more sustainable and economically viable approach to isoprene synthesis, offering an avenue for resource recovery from wastewater.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1788-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The biosynthesis of isoprene offers a more sustainable alternative to fossil fuel-based approaches, yet its success has been largely limited to pure organic compounds and the cost remains a challenge. This study proposes a waste-to-wealth strategy for isoprene biosynthesis utilizing genetically engineered E. coli bacteria to convert organic waste from real food wastewater. The impact of organic compounds present in wastewater on E. coli growth and isoprene production was systematically investigated. The results demonstrated that with filtration pretreatment of wastewater, isoprene yield, and production achieved 115 mg/g COD and 7.1 mg/(L·h), respectively. Moreover, even without pretreatment, isoprene yield only decreased by ∼ 24%, indicating promising scalability. Glucose, maltose, glycerol, and lactate are effective substrates for isoprene biosynthesis, whereas starch, protein, and acetate do not support E. coli growth. The optimum C/N ratio for isoprene production was found to be 8:1. Furthermore, augmenting essential nutrients in wastewater elevated the isoprene yield increased to 159 mg/g COD. The wastewater biosynthesis significantly reduced the cost (44%–53% decrease, p-value < 0.01) and CO2 emission (46%–55% decrease, p-value < 0.01) compared with both sugar fermentation and fossil fuel–based refining. This study introduced a more sustainable and economically viable approach to isoprene synthesis, offering an avenue for resource recovery from wastewater.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.