{"title":"Convectively coupled Rossby–Gravity waves in a field campaign: How they are captured in reanalysis products","authors":"Xiaocong Wang, Minghua Zhang","doi":"10.1002/asl.1206","DOIUrl":null,"url":null,"abstract":"<p>Convectively coupled equatorial waves are a significant source of atmospheric variability in the tropics. Current numerical models continue to struggle in simulating the coupled diabatic heating fields that are responsible for the development and maintenance of these waves. This study investigates how the diabatic fields associated with Mixed Rossby–Gravity waves (MRGs) are represented in four reanalysis products by using a unique observational dataset from the TRMM-KWAJEX (Tropical Rainfall Measuring Mission-Kwajalein Experiment) field campaign. These reanalyses include ERA5, Japanese 55-year Reanalysis (JRA-55), Climate Forecast System Reanalysis (CFSR), and Modern-Era Retrospective Analysis for Research and Applications (MERRA). We found that all four reanalyses captured the MRG structures in winds and temperature, and to a lesser degree in the humidity field except in the boundary layer. However, only the ERA5 and MERRA reanalyses captured the gradual rise and succession of the diabatic heating from boundary layer turbulence, shallow convection, cumulus congestus, and deep convection within the waves. ERA5 is the only product that also captured the gradual rise of the subgrid-scale vertical transport of moist static energy. All reanalysis products underestimated the diabatic heating from cumulus congestus. Results provide observational basis on what aspects of MRG can be trusted and what cannot in the reanalysis products.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1206","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Convectively coupled equatorial waves are a significant source of atmospheric variability in the tropics. Current numerical models continue to struggle in simulating the coupled diabatic heating fields that are responsible for the development and maintenance of these waves. This study investigates how the diabatic fields associated with Mixed Rossby–Gravity waves (MRGs) are represented in four reanalysis products by using a unique observational dataset from the TRMM-KWAJEX (Tropical Rainfall Measuring Mission-Kwajalein Experiment) field campaign. These reanalyses include ERA5, Japanese 55-year Reanalysis (JRA-55), Climate Forecast System Reanalysis (CFSR), and Modern-Era Retrospective Analysis for Research and Applications (MERRA). We found that all four reanalyses captured the MRG structures in winds and temperature, and to a lesser degree in the humidity field except in the boundary layer. However, only the ERA5 and MERRA reanalyses captured the gradual rise and succession of the diabatic heating from boundary layer turbulence, shallow convection, cumulus congestus, and deep convection within the waves. ERA5 is the only product that also captured the gradual rise of the subgrid-scale vertical transport of moist static energy. All reanalysis products underestimated the diabatic heating from cumulus congestus. Results provide observational basis on what aspects of MRG can be trusted and what cannot in the reanalysis products.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.