Bo Liu, Kai Yang, Xiangwen Liu, Gang Huang, Benjamin Ng
{"title":"Improved Indian Ocean dipole seasonal prediction in the new generation of CMA prediction system","authors":"Bo Liu, Kai Yang, Xiangwen Liu, Gang Huang, Benjamin Ng","doi":"10.1186/s40562-023-00315-5","DOIUrl":null,"url":null,"abstract":"Seasonal prediction of the Indian Ocean dipole (IOD) is important, considering its impact on the climate of surrounding regions. Here we compare the prediction of the IOD in two generations of prediction system developed by the China Meteorology Administration (CMA), i.e., the second-generation climate model prediction system (CPSv2) and CPSv3. The results show that CPSv3 has better ability to predict the variability and spatial pattern of the IOD than CPSv2, especially when the lead time is long. CPSv3 maintains a certain level of credibility when predicting IOD events with 6-month lead time. The improved data assimilation in CPSv3 has reduced the predictability error of eastern Indian Ocean sea surface temperature (SST) and contributed to improvements in IOD prediction. Enhanced simulation of the El Niño-Southern Oscillation (ENSO)–IOD relationship promotes better prediction skill of ENSO-related IOD events in CPSv3. Our results suggest that upgrading data assimilation and the simulation of the ENSO–IOD relationship are critical for improving the prediction of the IOD in coupled climate models.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"41 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-023-00315-5","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Seasonal prediction of the Indian Ocean dipole (IOD) is important, considering its impact on the climate of surrounding regions. Here we compare the prediction of the IOD in two generations of prediction system developed by the China Meteorology Administration (CMA), i.e., the second-generation climate model prediction system (CPSv2) and CPSv3. The results show that CPSv3 has better ability to predict the variability and spatial pattern of the IOD than CPSv2, especially when the lead time is long. CPSv3 maintains a certain level of credibility when predicting IOD events with 6-month lead time. The improved data assimilation in CPSv3 has reduced the predictability error of eastern Indian Ocean sea surface temperature (SST) and contributed to improvements in IOD prediction. Enhanced simulation of the El Niño-Southern Oscillation (ENSO)–IOD relationship promotes better prediction skill of ENSO-related IOD events in CPSv3. Our results suggest that upgrading data assimilation and the simulation of the ENSO–IOD relationship are critical for improving the prediction of the IOD in coupled climate models.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.