{"title":"In situ Polymerization of Polyamide 6/Carbon Nanotubes Nanocomposites and Their Melt Spinning Fibers","authors":"Chunxiao Yu, Rui Li, Mengke Wang, Feng Jiang, Zhicheng Qiu, Jigang Xu","doi":"10.1134/S1560090423600146","DOIUrl":null,"url":null,"abstract":"<p>Carbon nanotubes (CNTs)/polyamide-6 (PA6) nanocomposites with different CNTs loadings have been prepared by in situ polymerization approach. Then the blends were extruded into fibers using melt spinning technology to prepare as-spun and drawn fibers. Scanning electron microscopy observation on the fracture surfaces of the composite’s fiber shows not only a uniform dispersion of CNTs but also a strong interfacial adhesion with the matrix. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results show that CNTs act as strong heterogeneous nucleating agents for PA6 crystals. The breaking strength of drawn composite fibers, with incorporating less than 4 wt % CNTs, is slightly higher than that of pure PA fibers prepared at the same draw ratio. The PA6/CNTs composite fibers reveal a high increase in breaking strength as the draw ratio increased. Due to the electric conductivity of CNTs, electrical resistivity of the PA6/CNTs composite fibers is reduced.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 5","pages":"648 - 656"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090423600146","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotubes (CNTs)/polyamide-6 (PA6) nanocomposites with different CNTs loadings have been prepared by in situ polymerization approach. Then the blends were extruded into fibers using melt spinning technology to prepare as-spun and drawn fibers. Scanning electron microscopy observation on the fracture surfaces of the composite’s fiber shows not only a uniform dispersion of CNTs but also a strong interfacial adhesion with the matrix. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results show that CNTs act as strong heterogeneous nucleating agents for PA6 crystals. The breaking strength of drawn composite fibers, with incorporating less than 4 wt % CNTs, is slightly higher than that of pure PA fibers prepared at the same draw ratio. The PA6/CNTs composite fibers reveal a high increase in breaking strength as the draw ratio increased. Due to the electric conductivity of CNTs, electrical resistivity of the PA6/CNTs composite fibers is reduced.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed