On reciprocal sums of infinitely many arithmetic progressions with increasing prime power moduli

Pub Date : 2023-12-11 DOI:10.1007/s10474-023-01385-9
B. Borsos, A. Kovács, N. Tihanyi
{"title":"On reciprocal sums of infinitely many arithmetic progressions with increasing prime power moduli","authors":"B. Borsos,&nbsp;A. Kovács,&nbsp;N. Tihanyi","doi":"10.1007/s10474-023-01385-9","DOIUrl":null,"url":null,"abstract":"<div><p>Numbers of the form <span>\\(k\\cdot p^n+1\\)</span> with the restriction <span>\\(k &lt; p^n\\)</span> are called generalized Proth numbers. For a fixed prime <i>p</i> we denote them by <span>\\(\\mathcal{T}_p\\)</span>. The underlying structure of <span>\\(\\mathcal{T}_2\\)</span> (Proth numbers) was investigated in [2]. \nIn this paper the authors extend their results to all primes. An efficiently computable upper bound for the reciprocal sum of primes in <span>\\(\\mathcal{T}_p\\)</span> is presented.\nAll formulae were implemented and verified by the PARI/GP computer algebra system. We show that the asymptotic density of <span>\\( \\bigcup_{p\\in \\mathcal{P}} \\mathcal{T}_p\\)</span> is <span>\\(\\log 2\\)</span>.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01385-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numbers of the form \(k\cdot p^n+1\) with the restriction \(k < p^n\) are called generalized Proth numbers. For a fixed prime p we denote them by \(\mathcal{T}_p\). The underlying structure of \(\mathcal{T}_2\) (Proth numbers) was investigated in [2]. In this paper the authors extend their results to all primes. An efficiently computable upper bound for the reciprocal sum of primes in \(\mathcal{T}_p\) is presented. All formulae were implemented and verified by the PARI/GP computer algebra system. We show that the asymptotic density of \( \bigcup_{p\in \mathcal{P}} \mathcal{T}_p\) is \(\log 2\).

分享
查看原文
论素数幂模递增的无穷多个算术级数的倒数和
形式为 \(k\cdot p^n+1\) 并带有限制条件 \(k < p^n\) 的数被称为广义普罗斯数。对于固定的素数 p,我们用 \(\mathcal{T}_p\) 表示它们。2] 中研究了 \(\mathcal{T}_2\)(普罗斯数)的基本结构。在本文中,作者将他们的结果扩展到了所有素数。本文提出了一个可有效计算的 \(\mathcal{T}_p\) 中素数倒数和的上界。所有公式都是通过 PARI/GP 计算机代数系统实现和验证的。我们证明了 \( \bigcup_{p\in \mathcal{P}} \mathcal{T}_p\) 的渐近密度是 \(\log 2\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信