Energy decay of wave equations with infinite memory effects versus supercritical frictional dampings

IF 1.1 4区 数学 Q1 MATHEMATICS
Menglan Liao
{"title":"Energy decay of wave equations with infinite memory effects versus supercritical frictional dampings","authors":"Menglan Liao","doi":"10.1007/s11587-023-00832-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a class of damped viscoelastic wave equations </p><span>$$\\begin{aligned} u_{tt}-k(0)\\Delta u-\\int _0^\\infty k'(s)\\Delta u(t-s)ds+|u_t|^{m-1}u_t=|u|^{p-1}u \\end{aligned}$$</span><p>is considered in a bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^3\\)</span>. Uniform energy decay was discussed which depends on the relaxation function <span>\\(-k'(s)\\)</span> in the previous work (Guo et al., Z Angew Math Phys 69:65, 2018) for <span>\\(1\\le m\\le 5\\)</span>. Depending on a key integral inequality obtained by Martinez (ESAIM Control Optim Calc Var 4:419–444, 1999), we establish the decay estimate of the total energy for <span>\\(m&gt;5\\)</span>. Our results improve and complement the previous one. As an example, a logarithmic energy decay is also presented.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"56 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00832-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a class of damped viscoelastic wave equations

$$\begin{aligned} u_{tt}-k(0)\Delta u-\int _0^\infty k'(s)\Delta u(t-s)ds+|u_t|^{m-1}u_t=|u|^{p-1}u \end{aligned}$$

is considered in a bounded domain \(\Omega \subset {\mathbb {R}}^3\). Uniform energy decay was discussed which depends on the relaxation function \(-k'(s)\) in the previous work (Guo et al., Z Angew Math Phys 69:65, 2018) for \(1\le m\le 5\). Depending on a key integral inequality obtained by Martinez (ESAIM Control Optim Calc Var 4:419–444, 1999), we establish the decay estimate of the total energy for \(m>5\). Our results improve and complement the previous one. As an example, a logarithmic energy decay is also presented.

具有无限记忆效应与超临界摩擦阻尼的波方程能量衰减
本文考虑了有界域 \(\Omega \subset {\mathbb {R}}^3\) 中的一类阻尼粘弹性波方程 $$begin{aligned}u_{tt}-k(0)\Delta u-\int _0^\infty k'(s)\Delta u(t-s)ds+|u_t|^{m-1}u_t=|u|^{p-1}u \end{aligned}$$。在之前的工作(Guo et al., Z Angew Math Phys 69:65, 2018)中,针对\(1\le m\le 5\)讨论了取决于弛豫函数\(-k'(s)\)的均匀能量衰减。根据马丁内斯(ESAIM Control Optim Calc Var 4:419-444,1999)获得的关键积分不等式,我们建立了对\(m>5\ )总能量的衰变估计。我们的结果改进并补充了之前的结果。作为一个例子,我们还提出了对数能量衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信