{"title":"Numerical Prediction of Three-Point Bending of Braided Composite Tubes With Axial Yarns","authors":"Yisheng Liu, Jianhui Li, Zhenyu Wu, Xiaohan Chen","doi":"10.1007/s10443-023-10187-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the effect of axial yarns on progressive bending damage of braided composite tubes is predicted by simulation. In this paper, Abaqus mesoscopic finite element simulation of lateral collapse of biaxial and triaxial braided composite tubes is carried out. Firstly, the specific material parameters of impregnated yarn and resin were determined by micro-scale periodic unit cell (RUC) model and experiment, and the material properties of resin matrix and impregnated yarn were defined. In the simulation, the resin failure process was simulated according to the ductility and shear damage criteria, and the damage of fiber reinforcement was predicted according to the Hashin criteria. The simulation results show a good correlation with the experimental results, indicating that the Abaqus simulation model established in this paper can further explain the bending damage evolution behavior of biaxial and triaxial braided pipes, and further understand the damage mechanism of braided composite tubes. At the same time, the addition of axial yarn greatly improves the bearing stress and energy absorption capacity of braided composite tube. Finally, the experimental and simulated damage profiles of the two samples were compared.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 2","pages":"645 - 667"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-023-10187-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the effect of axial yarns on progressive bending damage of braided composite tubes is predicted by simulation. In this paper, Abaqus mesoscopic finite element simulation of lateral collapse of biaxial and triaxial braided composite tubes is carried out. Firstly, the specific material parameters of impregnated yarn and resin were determined by micro-scale periodic unit cell (RUC) model and experiment, and the material properties of resin matrix and impregnated yarn were defined. In the simulation, the resin failure process was simulated according to the ductility and shear damage criteria, and the damage of fiber reinforcement was predicted according to the Hashin criteria. The simulation results show a good correlation with the experimental results, indicating that the Abaqus simulation model established in this paper can further explain the bending damage evolution behavior of biaxial and triaxial braided pipes, and further understand the damage mechanism of braided composite tubes. At the same time, the addition of axial yarn greatly improves the bearing stress and energy absorption capacity of braided composite tube. Finally, the experimental and simulated damage profiles of the two samples were compared.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.