Phasing out palm and soy oil biodiesel in the EU: What is the benefit?

IF 5.9 3区 工程技术 Q1 AGRONOMY
Tobias Heimann, Robin Argueyrolles, Manuel Reinhardt, Franziska Schuenemann, Mareike Söder, Ruth Delzeit
{"title":"Phasing out palm and soy oil biodiesel in the EU: What is the benefit?","authors":"Tobias Heimann,&nbsp;Robin Argueyrolles,&nbsp;Manuel Reinhardt,&nbsp;Franziska Schuenemann,&nbsp;Mareike Söder,&nbsp;Ruth Delzeit","doi":"10.1111/gcbb.13115","DOIUrl":null,"url":null,"abstract":"<p>The Renewable Energy Directive (RED II) by the European Union (EU) provides an updated framework for the use of renewable energy in the EU transport sector until 2030, and bans the use of biofuels with a high risk of causing indirect land-use change in high carbon stock areas (high ILUC-risk criteria). The only biofuel feedstock affected by this criterion is palm oil. We employ the computable general equilibrium (CGE) model DART-BIO for a scenario-based policy analysis and evaluate a phase-out of palm oil-based biodiesel, and an additional phase-out of soy oil-based biodiesel in the EU. Our results show that the palm phase-out has only a relatively small impact on global palm fruit production and total crop land use in tropical and subtropical regions, while the soy phase-out leads to a comparable stronger decrease in global soy production, and a reduction in total cropland use in soy-producing regions. Both policies lead to increased oilseed production in the EU. Therefore, farmer in Malaysia and Indonesia face a significantly reduced income. While European farmers profit the most, EU firms and households are confronted with higher expenditures. Finally, this study indicates that unilateral demand-side regulations for a single good in a single sector is not sufficient for effective environmental protection. Enhanced binding sustainability criteria and certification schemes for the use of all vegetable oils in every sector and industry as well as improved protection schemes for sensible forest areas are necessary.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13115","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The Renewable Energy Directive (RED II) by the European Union (EU) provides an updated framework for the use of renewable energy in the EU transport sector until 2030, and bans the use of biofuels with a high risk of causing indirect land-use change in high carbon stock areas (high ILUC-risk criteria). The only biofuel feedstock affected by this criterion is palm oil. We employ the computable general equilibrium (CGE) model DART-BIO for a scenario-based policy analysis and evaluate a phase-out of palm oil-based biodiesel, and an additional phase-out of soy oil-based biodiesel in the EU. Our results show that the palm phase-out has only a relatively small impact on global palm fruit production and total crop land use in tropical and subtropical regions, while the soy phase-out leads to a comparable stronger decrease in global soy production, and a reduction in total cropland use in soy-producing regions. Both policies lead to increased oilseed production in the EU. Therefore, farmer in Malaysia and Indonesia face a significantly reduced income. While European farmers profit the most, EU firms and households are confronted with higher expenditures. Finally, this study indicates that unilateral demand-side regulations for a single good in a single sector is not sufficient for effective environmental protection. Enhanced binding sustainability criteria and certification schemes for the use of all vegetable oils in every sector and industry as well as improved protection schemes for sensible forest areas are necessary.

Abstract Image

欧盟逐步淘汰棕榈油和豆油生物柴油:有什么好处?
欧洲联盟(欧盟)的《可再生能源指令》(RED II)为 2030 年前欧盟交通部门使用可再生能源提供了一个最新框架,并禁止使用极有可能导致高碳储量地区间接土地利用变化的生物燃料(高 ILUC 风险标准)。受此标准影响的唯一生物燃料原料是棕榈油。我们采用可计算一般均衡(CGE)模型 DART-BIO 进行基于情景的政策分析,并对欧盟逐步淘汰以棕榈油为原料的生物柴油和额外逐步淘汰以大豆油为原料的生物柴油进行评估。我们的研究结果表明,逐步淘汰棕榈油对全球棕榈果产量以及热带和亚热带地区的农作物土地总利用量的影响相对较小,而逐步淘汰大豆则会导致全球大豆产量大幅下降,并减少大豆生产地区的农作物土地总利用量。这两项政策都导致欧盟的油籽产量增加。因此,马来西亚和印度尼西亚农民的收入将大幅减少。虽然欧洲农民获利最多,但欧盟企业和家庭却面临着更高的支出。最后,本研究表明,针对单一部门单一商品的单边需求方法规不足以实现有效的环境保护。有必要对每个部门和行业使用的所有植物油加强具有约束力的可持续性标准和认证计划,并改进对合理林区的保护计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信