On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Boris S. Bardin
{"title":"On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom","authors":"Boris S. Bardin","doi":"10.1134/S1560354723060059","DOIUrl":null,"url":null,"abstract":"<div><p>A general method is presented for constructing a nonlinear canonical transformation, which makes it possible to introduce local variables in a neighborhood of periodic motions of an autonomous Hamiltonian system with two degrees of freedom. This method can be used for investigating the behavior of the Hamiltonian system in\nthe vicinity of its periodic trajectories. In particular, it can be applied to solve the problem of orbital stability of periodic motions.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 6","pages":"878 - 887"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354723060059","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A general method is presented for constructing a nonlinear canonical transformation, which makes it possible to introduce local variables in a neighborhood of periodic motions of an autonomous Hamiltonian system with two degrees of freedom. This method can be used for investigating the behavior of the Hamiltonian system in the vicinity of its periodic trajectories. In particular, it can be applied to solve the problem of orbital stability of periodic motions.

论在具有两个自由度的哈密尔顿系统的周期解邻域中引入局部变量的方法
本文介绍了构建非线性典型变换的一般方法,该方法可以在具有两个自由度的自主哈密尔顿系统的周期运动附近引入局部变量。这种方法可用于研究哈密顿系统在其周期轨迹附近的行为。特别是,它可用于解决周期运动的轨道稳定性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信