{"title":"Geo-temperature response to reinjection in sandstone geothermal reservoirs","authors":"Jialong Li, Fengxin Kang, Tong Bai, Zhenhan Li, Qiang Zhao, Pingping Zhang, Tingting Zheng, Haibo Sui","doi":"10.1186/s40517-023-00277-z","DOIUrl":null,"url":null,"abstract":"<div><p>To study the evolution rules and behaviors of heat transport in a sandstone geothermal reservoir caused by cooled water reinjection, this research focuses on the quantitative relationship among reinjection parameters and the thermal breakthrough time of production wells. The permeation, tracer, and reinjection tests were conducted in a simulation model using a large sand tank in conjunction with the numerical simulation method based on COMSOL Multiphysics. Subsequently, sensitivity analysis and nonlinear fitting were performed to investigate the effects of fluid viscosity and density on the reinjection process, and to analyze the impact of reinjection parameters on the thermal breakthrough time of production wells, along with their underlying mechanisms and law. The results indicate that the migration velocity of reinjection water is greater in coarse sand layer compared to that in medium sand layer, and the thermal breakthrough time <i>t</i> is linearly correlated with reinjection rate (<i>Q</i>) raised to the power of − 0.85, temperature difference (<i>ΔT</i>) raised to the power of − 0.21, and spacing between the production and reinjection wells (<i>R</i>) raised to the power of 1.4. The correlation equation and analysis show that when the temperature difference between production and reinjection <i>ΔT</i> is more than 30 ℃, the influence of <i>ΔT</i> on the thermal breakthrough time of production well becomes weak, because <i>ΔT</i> exerts an effect on the thermal breakthrough time of production well <i>t</i> by influencing the relative position of the 18.5 ℃ isotherm in the temperature transition region. The error in reinjecting high-temperature fluid into low-temperature fluid may be corrected by introducing a viscosity correction coefficient <i>α</i><sub>μ</sub>.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00277-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00277-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To study the evolution rules and behaviors of heat transport in a sandstone geothermal reservoir caused by cooled water reinjection, this research focuses on the quantitative relationship among reinjection parameters and the thermal breakthrough time of production wells. The permeation, tracer, and reinjection tests were conducted in a simulation model using a large sand tank in conjunction with the numerical simulation method based on COMSOL Multiphysics. Subsequently, sensitivity analysis and nonlinear fitting were performed to investigate the effects of fluid viscosity and density on the reinjection process, and to analyze the impact of reinjection parameters on the thermal breakthrough time of production wells, along with their underlying mechanisms and law. The results indicate that the migration velocity of reinjection water is greater in coarse sand layer compared to that in medium sand layer, and the thermal breakthrough time t is linearly correlated with reinjection rate (Q) raised to the power of − 0.85, temperature difference (ΔT) raised to the power of − 0.21, and spacing between the production and reinjection wells (R) raised to the power of 1.4. The correlation equation and analysis show that when the temperature difference between production and reinjection ΔT is more than 30 ℃, the influence of ΔT on the thermal breakthrough time of production well becomes weak, because ΔT exerts an effect on the thermal breakthrough time of production well t by influencing the relative position of the 18.5 ℃ isotherm in the temperature transition region. The error in reinjecting high-temperature fluid into low-temperature fluid may be corrected by introducing a viscosity correction coefficient αμ.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.