Building TiO2-doped magnetic biochars from Citrus sinensis peels as low-cost materials for improved dye degradation using a mathematical approach

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Georges Teikam Kenda , Cyrille Ghislain Fotsop , Donald Raoul Tchuifon Tchuifon , Paul Alain Nanssou Kouteu , Tania Feze Fanle , Solomon Gabche Anagho
{"title":"Building TiO2-doped magnetic biochars from Citrus sinensis peels as low-cost materials for improved dye degradation using a mathematical approach","authors":"Georges Teikam Kenda ,&nbsp;Cyrille Ghislain Fotsop ,&nbsp;Donald Raoul Tchuifon Tchuifon ,&nbsp;Paul Alain Nanssou Kouteu ,&nbsp;Tania Feze Fanle ,&nbsp;Solomon Gabche Anagho","doi":"10.1016/j.apsadv.2023.100554","DOIUrl":null,"url":null,"abstract":"<div><p>TiO<sub>2</sub>-doped ferromagnetic (TiFeBC) composites were synthesised from lignocellulosic orange peel biochar (BC) material using co-precipitation method. Several characterization techniques (XRD, SEM, EDX, FT-IR, EIS and N<sub>2</sub> adsorption-desorption) were used to confirm the presence of Fe<sub>3</sub>O<sub>4</sub> and TiO<sub>2</sub> particles impregnated within the carbonaceous matrix of the biochar. Electrochemical impedance spectroscopy revealed that the sample obtained using 2.5 wt. % of TiO<sub>2</sub> (TiFeBC1) has the lowest charge transfer resistance compared to those of 5 wt.% and 7.5 wt.%. TiFeBC1 was used for the optimization of the degradation of reactive yellow-145 from Cameroon Textile Industry using Fenton process. Optimum operational parameters were found to be: pH of 2.02, initial dye concentration of 75 mg/L, mass of material of 5998 mg/L and a time of 16.01 min. Using the CCD of the Response Surface Methodology, a predicted optimum response of 98.89 % was obtained in agreement with an experimental response of 97.95 % of dye degradation. Analysis of variance presented good correlation between the experimental data and the postulated model (R<sup>2</sup> = 94.24 % and R<sup>2</sup><sub>adjusted</sub> = 87.52 %). The degradation reaction was found to obey the first order kinetic rate law (R<sup>2</sup> = 0.986) with respect to the dye. The study of interfering processes revealed that adsorption and H<sub>2</sub>O<sub>2</sub>/daylight-assisted degradation are two phenomenon that could possibly contribute to a negligible extent to the elimination of the dye during the Fenton process. The stability and efficiency of TiFeBC1 was evaluated over ten cycles and the material was found to lose approximately 5 % of its efficiency.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523923001885/pdfft?md5=5ee79a14de2f24c16db78a2851e788ba&pid=1-s2.0-S2666523923001885-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523923001885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

TiO2-doped ferromagnetic (TiFeBC) composites were synthesised from lignocellulosic orange peel biochar (BC) material using co-precipitation method. Several characterization techniques (XRD, SEM, EDX, FT-IR, EIS and N2 adsorption-desorption) were used to confirm the presence of Fe3O4 and TiO2 particles impregnated within the carbonaceous matrix of the biochar. Electrochemical impedance spectroscopy revealed that the sample obtained using 2.5 wt. % of TiO2 (TiFeBC1) has the lowest charge transfer resistance compared to those of 5 wt.% and 7.5 wt.%. TiFeBC1 was used for the optimization of the degradation of reactive yellow-145 from Cameroon Textile Industry using Fenton process. Optimum operational parameters were found to be: pH of 2.02, initial dye concentration of 75 mg/L, mass of material of 5998 mg/L and a time of 16.01 min. Using the CCD of the Response Surface Methodology, a predicted optimum response of 98.89 % was obtained in agreement with an experimental response of 97.95 % of dye degradation. Analysis of variance presented good correlation between the experimental data and the postulated model (R2 = 94.24 % and R2adjusted = 87.52 %). The degradation reaction was found to obey the first order kinetic rate law (R2 = 0.986) with respect to the dye. The study of interfering processes revealed that adsorption and H2O2/daylight-assisted degradation are two phenomenon that could possibly contribute to a negligible extent to the elimination of the dye during the Fenton process. The stability and efficiency of TiFeBC1 was evaluated over ten cycles and the material was found to lose approximately 5 % of its efficiency.

利用数学方法从柑橘皮中提取掺杂 TiO2 的磁性生物炭,将其作为改善染料降解的低成本材料
采用共沉淀法从木质纤维素桔皮生物炭(BC)材料中合成了掺杂 TiO2 的铁磁性(TiFeBC)复合材料。通过多种表征技术(XRD、SEM、EDX、傅立叶变换红外光谱、EIS 和 N2 吸附-解吸)确认了浸渍在生物炭碳基质中的 Fe3O4 和 TiO2 颗粒的存在。电化学阻抗光谱显示,与 5 wt.% 和 7.5 wt.% 的样品相比,使用 2.5 wt.% TiO2(TiFeBC1)获得的样品具有最低的电荷转移电阻。使用 TiFeBC1 对喀麦隆纺织工业中的活性黄-145 进行了芬顿降解优化。最佳操作参数为:pH 值为 2.02,初始染料浓度为 75 毫克/升,材料质量为 5998 毫克/升,时间为 16.01 分钟。利用响应面方法的 CCD,预测的最佳响应为 98.89%,与染料降解的实验响应 97.95%相吻合。方差分析结果表明,实验数据与假设模型之间具有良好的相关性(R2 = 94.24 %,R2 调整 = 87.52 %)。降解反应符合染料的一阶动力学速率定律(R2 = 0.986)。对干扰过程的研究表明,吸附和 H2O2/日光辅助降解这两种现象可能在 Fenton 过程中对染料的消除起到微不足道的作用。对 TiFeBC1 的稳定性和效率进行了十次循环评估,发现该材料的效率下降了约 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信