Metastable defect curing by alkaline earth metal in chalcogenide thin-film solar cells

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Woo-Jung Lee , Dae-Hyung Cho , Myeong Eon Kim , Kwangsik Jeong , Tae-Ha Hwang , Woo-Ju Kim , Yong-Duck Chung
{"title":"Metastable defect curing by alkaline earth metal in chalcogenide thin-film solar cells","authors":"Woo-Jung Lee ,&nbsp;Dae-Hyung Cho ,&nbsp;Myeong Eon Kim ,&nbsp;Kwangsik Jeong ,&nbsp;Tae-Ha Hwang ,&nbsp;Woo-Ju Kim ,&nbsp;Yong-Duck Chung","doi":"10.1016/j.apsadv.2023.100539","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the use of an alkaline earth metal precursor (MgF<sub>2</sub>) to enhance the performance of chalcogenide-based Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells with a chemically bath deposited-Zn(O,S) (CBD-Zn(O,S)) buffer layer <em>via</em> post-deposited treatment (PDT). The optimal substrate temperature and layer thickness are 570 °C and 5 nm, and the light soaking (LS) treatment does not be required in this condition. The morphological properties and chemical reaction at the p-n junction of CIGS/CBD-Zn(O,S) are examined as a function of MgF<sub>2</sub> PDT layer thickness. As the MgF<sub>2</sub> PDT layer thickness increases, the CIGS surface becomes rough with vigorously agglomerated Cu clusters owing to the substantially high substrate temperature, which increases the incorporation of In-Se bonds and the oxygenation rate of MgF<sub>2</sub>. Density functional theory (DFT) clarifies the improved cell efficiency without the need for LS treatment (MgF<sub>2</sub> PDT, 5 nm) by calculating the defect-related electronic behavior. The MgF<sub>2</sub> phase effectively passivates metastable defect Cu-Se vacancy defects (V<sub>Cu-Se</sub>), related to the LS effect without the additional formation of deep-level defect states into the CIGS bandgap. Moreover, V<sub>Cu-Se</sub> states exert the most influence on the LS effect, and the control of defect states in the CIGS layer (not the buffer layer) is crucial for cell efficiency.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523923001733/pdfft?md5=8245d6878591ed31747012d919801499&pid=1-s2.0-S2666523923001733-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523923001733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the use of an alkaline earth metal precursor (MgF2) to enhance the performance of chalcogenide-based Cu(In,Ga)Se2 (CIGS) solar cells with a chemically bath deposited-Zn(O,S) (CBD-Zn(O,S)) buffer layer via post-deposited treatment (PDT). The optimal substrate temperature and layer thickness are 570 °C and 5 nm, and the light soaking (LS) treatment does not be required in this condition. The morphological properties and chemical reaction at the p-n junction of CIGS/CBD-Zn(O,S) are examined as a function of MgF2 PDT layer thickness. As the MgF2 PDT layer thickness increases, the CIGS surface becomes rough with vigorously agglomerated Cu clusters owing to the substantially high substrate temperature, which increases the incorporation of In-Se bonds and the oxygenation rate of MgF2. Density functional theory (DFT) clarifies the improved cell efficiency without the need for LS treatment (MgF2 PDT, 5 nm) by calculating the defect-related electronic behavior. The MgF2 phase effectively passivates metastable defect Cu-Se vacancy defects (VCu-Se), related to the LS effect without the additional formation of deep-level defect states into the CIGS bandgap. Moreover, VCu-Se states exert the most influence on the LS effect, and the control of defect states in the CIGS layer (not the buffer layer) is crucial for cell efficiency.

用碱土金属固化铬化物薄膜太阳能电池中的可转移缺陷
本研究探讨了使用碱土金属前驱体(MgF2)通过沉积后处理(PDT)来提高具有化学沉积锌(O,S)(CBD-Zn(O,S))缓冲层的铬化铜铟镓硒(CIGS)太阳能电池的性能。最佳衬底温度和缓冲层厚度分别为 570 ℃ 和 5 nm,在此条件下无需进行光浸泡(LS)处理。研究了 CIGS/CBD-Zn(O,S) p-n 结的形态特性和化学反应与 MgF2 PDT 层厚度的函数关系。随着 MgF2 PDT 层厚度的增加,CIGS 表面变得粗糙,由于基底温度大幅升高,Cu 团簇剧烈聚集,从而增加了 In-Se 键的结合和 MgF2 的氧合速率。密度泛函理论(DFT)通过计算与缺陷相关的电子行为,阐明了无需 LS 处理(MgF2 PDT,5 nm)电池效率的提高。MgF2 相有效地钝化了与 LS 效应相关的可陨落缺陷 Cu-Se 空位缺陷 (VCu-Se),而不会在 CIGS 带隙中形成额外的深层缺陷态。此外,VCu-Se 状态对 LS 效应的影响最大,因此控制 CIGS 层(而非缓冲层)中的缺陷状态对电池效率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信