{"title":"Undesirable protein sequence variations in maize genes that confer resistance to fungal pathogens and insect pests","authors":"Rebecca M. Lyon, Eric T. Johnson, Patrick F. Dowd","doi":"10.1016/j.plgene.2023.100441","DOIUrl":null,"url":null,"abstract":"<div><p>Diseases and insect pests<span><span> greatly impact sustainable production in maize. Maize inbred lines have varying levels of resistance to these pathogens and insects, but little is known about the diversity of their resistance proteins. In this study, genes encoding seven proteins that are involved in resistance to insects and pathogens in maize were analyzed in 46 maize inbred lines to elucidate the differences in </span>amino acid sequences<span><span><span>. The proteins of interest are superlectin, maizewin, hydrolase, geranyl geranyl </span>transferase<span>, quinone oxidoreductase, AIL1, and </span></span>defensin<span><span>. The protein sequences encoded by genes for superlectin, AIL1, and defensin were found to be disrupted in some maize inbreds but were conserved in others. The characterized disruptions resulted from single amino acid changes, insertions, or deletions. While the effect of single amino acid changes is hard to predict, </span>insertions and deletions likely disrupt protein function, increasing the susceptibility of maize plants to insects and/or diseases. Functional resistance genes can be incorporated from the identified maize inbreds into commercial hybrids to promote enhanced insect and pathogen resistance.</span></span></span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"37 ","pages":"Article 100441"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407323000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Diseases and insect pests greatly impact sustainable production in maize. Maize inbred lines have varying levels of resistance to these pathogens and insects, but little is known about the diversity of their resistance proteins. In this study, genes encoding seven proteins that are involved in resistance to insects and pathogens in maize were analyzed in 46 maize inbred lines to elucidate the differences in amino acid sequences. The proteins of interest are superlectin, maizewin, hydrolase, geranyl geranyl transferase, quinone oxidoreductase, AIL1, and defensin. The protein sequences encoded by genes for superlectin, AIL1, and defensin were found to be disrupted in some maize inbreds but were conserved in others. The characterized disruptions resulted from single amino acid changes, insertions, or deletions. While the effect of single amino acid changes is hard to predict, insertions and deletions likely disrupt protein function, increasing the susceptibility of maize plants to insects and/or diseases. Functional resistance genes can be incorporated from the identified maize inbreds into commercial hybrids to promote enhanced insect and pathogen resistance.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.