CreCENT: Creatinine and Chloride based Electrochemical Non-faradaic renal health mapping Technology

Antra Ganguly, Varun Gunda, Shalini Prasad
{"title":"CreCENT: Creatinine and Chloride based Electrochemical Non-faradaic renal health mapping Technology","authors":"Antra Ganguly,&nbsp;Varun Gunda,&nbsp;Shalini Prasad","doi":"10.1016/j.urine.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose a novel biosensing scheme to enable the stratification of kidney diseases based on severity and progression for timely triage and efficient management. Here, using Creatinine and Chloride as target analytes for the biosensor, we have discussed an arbitrary three-class stratification mapping renal health for Chronic Kidney Disease (CKD) management. Our method is fully quantitative, fast (&lt;5 min turn-around time), and can work with any combination of disease biomarkers to categorize diseases by subtypes and severity. At its core, the biosensor relies on electrochemical impedance spectroscopy to transduce subtle changes at the input Creatinine and Chloride levels in a drop of neat, unprocessed urine. It can operate over a wide dynamic range of 0.15-5 mg/mL for Creatinine and 15-105 mM for Chloride. Further, as proof of concept, the biosensing scheme utilizes a simple Support Vector Machine-based supervised machine learning model for 3-state output disease state classification (corresponding to low, medium, and high disease severity) with a 97.96% accuracy. This scheme is versatile and can be extended to more complex scenarios with more biomarker input stimuli for improved diagnostics and precision therapy for other chronic urological diseases.</p></div>","PeriodicalId":75287,"journal":{"name":"Urine (Amsterdam, Netherlands)","volume":"6 ","pages":"Pages 1-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259028062300013X/pdfft?md5=40251a3a1c23df365d5168f1883b81ee&pid=1-s2.0-S259028062300013X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urine (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259028062300013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a novel biosensing scheme to enable the stratification of kidney diseases based on severity and progression for timely triage and efficient management. Here, using Creatinine and Chloride as target analytes for the biosensor, we have discussed an arbitrary three-class stratification mapping renal health for Chronic Kidney Disease (CKD) management. Our method is fully quantitative, fast (<5 min turn-around time), and can work with any combination of disease biomarkers to categorize diseases by subtypes and severity. At its core, the biosensor relies on electrochemical impedance spectroscopy to transduce subtle changes at the input Creatinine and Chloride levels in a drop of neat, unprocessed urine. It can operate over a wide dynamic range of 0.15-5 mg/mL for Creatinine and 15-105 mM for Chloride. Further, as proof of concept, the biosensing scheme utilizes a simple Support Vector Machine-based supervised machine learning model for 3-state output disease state classification (corresponding to low, medium, and high disease severity) with a 97.96% accuracy. This scheme is versatile and can be extended to more complex scenarios with more biomarker input stimuli for improved diagnostics and precision therapy for other chronic urological diseases.

CreCENT:基于肌酐和氯化物的电化学非法拉第肾脏健康绘图技术
在这项工作中,我们提出了一种新颖的生物传感方案,可根据肾脏疾病的严重程度和进展情况进行分层,以便及时分流和有效管理。在这里,我们使用肌酐和氯化物作为生物传感器的目标分析物,讨论了一种任意的三类分层方法,用于慢性肾脏病(CKD)的管理。我们的方法完全定量、快速(5 分钟即可完成),可与任何疾病生物标记物组合使用,按亚型和严重程度对疾病进行分类。该生物传感器的核心是依靠电化学阻抗光谱来传递一滴未经处理的纯净尿液中肌酐和氯化物含量的微妙变化。它可以在很宽的动态范围内工作,肌酐为 0.15-5 mg/mL,氯化物为 15-105 mM。此外,作为概念验证,该生物传感方案利用一个简单的基于支持向量机的有监督机器学习模型进行 3 态输出疾病状态分类(对应低、中、高疾病严重程度),准确率高达 97.96%。该方案用途广泛,可扩展到更复杂的场景,使用更多的生物标记输入刺激来改进诊断和其他慢性泌尿系统疾病的精准治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urine (Amsterdam, Netherlands)
Urine (Amsterdam, Netherlands) Health Informatics, Pathology and Medical Technology, Urology
自引率
0.00%
发文量
0
审稿时长
99 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信