{"title":"A glimpse into the structural properties of α-synuclein oligomers","authors":"Jaime Santos, Irantzu Pallarès, Salvador Ventura","doi":"10.1002/biof.2021","DOIUrl":null,"url":null,"abstract":"<p>α-Synuclein (αS) aggregation is the main neurological hallmark of a group of debilitating neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease is the most prevalent. αS oligomers formed during the initial stages of aggregation are considered key pathogenic drivers of disease onset and progression, standing as privileged targets for therapeutic intervention and diagnosis. However, the structure of αS oligomers and the mechanistic basis of oligomer to fibril conversion are yet poorly understood, thereby precluding the rational formulation of strategies aimed at targeting oligomeric species. In this review, we delve into the recent advances in the structural and mechanistic characterization of αS oligomers. We also discuss how these advances are transforming our understanding of these elusive species and paving the way for oligomer-targeting therapeutics and diagnosis.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.2021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
α-Synuclein (αS) aggregation is the main neurological hallmark of a group of debilitating neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease is the most prevalent. αS oligomers formed during the initial stages of aggregation are considered key pathogenic drivers of disease onset and progression, standing as privileged targets for therapeutic intervention and diagnosis. However, the structure of αS oligomers and the mechanistic basis of oligomer to fibril conversion are yet poorly understood, thereby precluding the rational formulation of strategies aimed at targeting oligomeric species. In this review, we delve into the recent advances in the structural and mechanistic characterization of αS oligomers. We also discuss how these advances are transforming our understanding of these elusive species and paving the way for oligomer-targeting therapeutics and diagnosis.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.