Xialiang Jiang, Cheng Chen, Junjie Chen, Shuning Yu, Wei Yu, Liguo Shen, Bisheng Li, Mingzhu Zhou, Hongjun Lin
{"title":"Atomically dispersed dual-atom catalysts: A new rising star in environmental remediation","authors":"Xialiang Jiang, Cheng Chen, Junjie Chen, Shuning Yu, Wei Yu, Liguo Shen, Bisheng Li, Mingzhu Zhou, Hongjun Lin","doi":"10.1016/j.scitotenv.2023.169142","DOIUrl":null,"url":null,"abstract":"<p>Single-atom catalysts, characterized by individual metal atoms as active centers, have emerged as promising candidates owing to their remarkable catalytic efficiency, maximum atomic utilization efficiency, and robust stability. However, the limitation of single-atom catalysts lies in their inability to cater to multistep reactions using a solitary active site. Introducing an additional metal atom can amplify the number of active sites, modulate the electronic structure, bolster adsorption ability, and enable a gamut of core reactions, thus augmenting their catalytic prowess. As such, dual-atom catalysts have risen to prominence. However, a comprehensive review elucidating the realm of dual-atom catalysts in environmental remediation is currently lacking. This review endeavors to bridge this gap, starting with a discourse on immobilization techniques for dual-atom catalysts, which includes configurations such as adjacent atoms, bridged atoms, and co-facially separated atoms. The review then delves into the intrinsic activity mechanisms of these catalysts, elucidating aspects like adsorption dynamics, electronic regulation, and synergistic effects. Following this, a comprehensive summarization of dual-atom catalysts for environmental applications is provided, spanning electrocatalysis, photocatalysis, and Fenton-like reactions. Finally, the existing challenges and opportunities in the field of dual-atom catalysts are extensively discussed. This work aims to be a beacon, illuminating the path towards the evolution and adoption of dual-atom catalysts in environmental remediation.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2023.169142","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom catalysts, characterized by individual metal atoms as active centers, have emerged as promising candidates owing to their remarkable catalytic efficiency, maximum atomic utilization efficiency, and robust stability. However, the limitation of single-atom catalysts lies in their inability to cater to multistep reactions using a solitary active site. Introducing an additional metal atom can amplify the number of active sites, modulate the electronic structure, bolster adsorption ability, and enable a gamut of core reactions, thus augmenting their catalytic prowess. As such, dual-atom catalysts have risen to prominence. However, a comprehensive review elucidating the realm of dual-atom catalysts in environmental remediation is currently lacking. This review endeavors to bridge this gap, starting with a discourse on immobilization techniques for dual-atom catalysts, which includes configurations such as adjacent atoms, bridged atoms, and co-facially separated atoms. The review then delves into the intrinsic activity mechanisms of these catalysts, elucidating aspects like adsorption dynamics, electronic regulation, and synergistic effects. Following this, a comprehensive summarization of dual-atom catalysts for environmental applications is provided, spanning electrocatalysis, photocatalysis, and Fenton-like reactions. Finally, the existing challenges and opportunities in the field of dual-atom catalysts are extensively discussed. This work aims to be a beacon, illuminating the path towards the evolution and adoption of dual-atom catalysts in environmental remediation.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.