Carbon-based photothermal materials for the simultaneous generation of water vapor and electricity

IF 5.7 3区 材料科学 Q2 Materials Science
Zi-han Qiu , Guan-yu Zhao , Yang Sun , Xu-zhen Wang , Zong-bin Zhao , Jie-shan Qiu
{"title":"Carbon-based photothermal materials for the simultaneous generation of water vapor and electricity","authors":"Zi-han Qiu ,&nbsp;Guan-yu Zhao ,&nbsp;Yang Sun ,&nbsp;Xu-zhen Wang ,&nbsp;Zong-bin Zhao ,&nbsp;Jie-shan Qiu","doi":"10.1016/S1872-5805(23)60785-1","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven interfacial vapor generation (SIVG) is increasingly used for fresh water production, having the advantages of low energy consumption, eco-friendliness, and high efficiency. Carbon-based photothermal materials (CPTMs) can introduce temperature and salinity gradients in the SIVG process because of their outstanding photothermal conversion properties, which have given SIVG great potential for both steam and power generation. Various kinds of CPTMs for clean water and electricity generation are discussed in this review. The basic principles and key performance indices of SIVG are first described and the photothermal and SIVG performance of various CPTMs including graphene oxides, carbon nanotubes, carbon dots and carbonized biomass are then summarized. Finally, current research concerning water/electricity cogeneration and ways to deal with the problems encountered are presented, to provide some guidelines for the use of multifunctional CPTMs for simultaneous steam and electricity generation.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 6","pages":"Pages 997-1017"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607851","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven interfacial vapor generation (SIVG) is increasingly used for fresh water production, having the advantages of low energy consumption, eco-friendliness, and high efficiency. Carbon-based photothermal materials (CPTMs) can introduce temperature and salinity gradients in the SIVG process because of their outstanding photothermal conversion properties, which have given SIVG great potential for both steam and power generation. Various kinds of CPTMs for clean water and electricity generation are discussed in this review. The basic principles and key performance indices of SIVG are first described and the photothermal and SIVG performance of various CPTMs including graphene oxides, carbon nanotubes, carbon dots and carbonized biomass are then summarized. Finally, current research concerning water/electricity cogeneration and ways to deal with the problems encountered are presented, to provide some guidelines for the use of multifunctional CPTMs for simultaneous steam and electricity generation.

同时产生水蒸气和电能的碳基光热材料
太阳能驱动界面蒸汽发生技术(SIVG)具有能耗低、生态友好和效率高等优点,正越来越多地用于淡水生产。碳基光热材料(CPTMs)因其出色的光热转换特性,可在 SIVG 过程中引入温度和盐度梯度,这使得 SIVG 在蒸汽和发电方面具有巨大潜力。本综述讨论了各种用于清洁水和发电的 CPTM。首先介绍了 SIVG 的基本原理和关键性能指标,然后总结了各种 CPTM(包括石墨烯氧化物、碳纳米管、碳点和碳化生物质)的光热和 SIVG 性能。最后,介绍了目前有关水/电热电联产的研究以及解决所遇到问题的方法,为使用多功能 CPTM 同时产生蒸汽和电力提供了一些指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信