A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability

IF 5.7 3区 材料科学 Q2 Materials Science
Wei-cai Zhang , Chao-wei Yang , Shu-yu Hu , Ya-wei Fang , Xiao-min Lin , Zhuo-hao Xie , Ming-tao Zheng , Ying-liang Liu , Ye-ru Liang
{"title":"A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability","authors":"Wei-cai Zhang ,&nbsp;Chao-wei Yang ,&nbsp;Shu-yu Hu ,&nbsp;Ya-wei Fang ,&nbsp;Xiao-min Lin ,&nbsp;Zhuo-hao Xie ,&nbsp;Ming-tao Zheng ,&nbsp;Ying-liang Liu ,&nbsp;Ye-ru Liang","doi":"10.1016/S1872-5805(23)60781-4","DOIUrl":null,"url":null,"abstract":"<div><p>Because of their high electrochemical activity, good structural stability, and abundant active sites, multi-metal sulfide/carbon (MMS/C) composites are of tremendous interest in diverse fields, including catalysis, energy, sensing, and environmental science. However, their cumbersome, inefficient, and environmentally unfriendly synthesis is hindering their practical application. We report a straightforward and universal method for their production which is based on homogeneous multi-phase interface engineering. The method has enabled the production of 14 different MMS/C composites, as examples, with well-organized composite structures, different components, and dense heterointerfaces. Because of their composition and structure, a typical composite has efficient, fast, and persistent lithium-ion storage. A ZnS-Co<sub>9</sub>S<sub>8</sub>/C composite anode showed a remarkable rate performance and an excellent capacity of 651 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> after 600 cycles. This work is expected to pave the way for the easy fabrication of MMS/C composites.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 6","pages":"Pages 1080-1091"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607814","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Because of their high electrochemical activity, good structural stability, and abundant active sites, multi-metal sulfide/carbon (MMS/C) composites are of tremendous interest in diverse fields, including catalysis, energy, sensing, and environmental science. However, their cumbersome, inefficient, and environmentally unfriendly synthesis is hindering their practical application. We report a straightforward and universal method for their production which is based on homogeneous multi-phase interface engineering. The method has enabled the production of 14 different MMS/C composites, as examples, with well-organized composite structures, different components, and dense heterointerfaces. Because of their composition and structure, a typical composite has efficient, fast, and persistent lithium-ion storage. A ZnS-Co9S8/C composite anode showed a remarkable rate performance and an excellent capacity of 651 mAh·g−1 at 0.1 A·g−1 after 600 cycles. This work is expected to pave the way for the easy fabrication of MMS/C composites.

制备具有高锂离子存储能力的多金属硫化物/碳复合材料的一锅法
多金属硫化物/碳(MMS/C)复合材料具有很高的电化学活性、良好的结构稳定性和丰富的活性位点,因此在催化、能源、传感和环境科学等多个领域都有着巨大的应用价值。然而,其繁琐、低效和不环保的合成方法阻碍了其实际应用。我们报告了一种基于均相多相界面工程的直接而通用的方法。以 14 种不同的 MMS/C 复合材料为例,这些复合材料结构合理、成分各异且具有致密的异质界面。由于其成分和结构,典型的复合材料具有高效、快速和持久的锂离子存储能力。一种 ZnS-Co9S8/C 复合负极显示出显著的速率性能,在 0.1 A-g-1 的条件下,循环 600 次后可达到 651 mAh-g-1 的出色容量。这项工作有望为轻松制造 MMS/C 复合材料铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信