C1,α-regularity for solutions of degenerate/singular fully nonlinear parabolic equations

IF 2.1 1区 数学 Q1 MATHEMATICS
Ki-Ahm Lee , Se-Chan Lee , Hyungsung Yun
{"title":"C1,α-regularity for solutions of degenerate/singular fully nonlinear parabolic equations","authors":"Ki-Ahm Lee ,&nbsp;Se-Chan Lee ,&nbsp;Hyungsung Yun","doi":"10.1016/j.matpur.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span><span>-estimate for viscosity solutions<span> of degenerate/singular fully nonlinear parabolic equations</span></span><span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi></mrow></msup><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>+</mo><mi>f</mi><mspace></mspace><mtext>in </mtext><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><mi>γ</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>. For this purpose, we prove the well-posedness of the regularized Cauchy-Dirichlet problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd><mtd><mo>=</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>γ</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mtd><mtd><mspace></mspace></mtd><mtd><mrow><mtext>in </mtext><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mi>φ</mi></mtd><mtd><mspace></mspace></mtd><mtd><mrow><mtext>on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>p</mi></mrow></msub><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>γ</mi><mo>&gt;</mo><mo>−</mo><mn>2</mn></math></span>. Our approach utilizes the Bernstein method with approximations in view of the difference quotient.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"181 ","pages":"Pages 152-189"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001538","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish the interior C1,α-estimate for viscosity solutions of degenerate/singular fully nonlinear parabolic equationsut=|Du|γF(D2u)+fin Q1, where γ>1 and fC(Q1)L(Q1). For this purpose, we prove the well-posedness of the regularized Cauchy-Dirichlet problem{ut=(1+|Du|2)γ/2F(D2u)in Q1u=φon pQ1, where γ>2. Our approach utilizes the Bernstein method with approximations in view of the difference quotient.

退化/奇异全非线性抛物方程解的 C1,α-规则性
我们建立了退化/成线性全非线性抛物方程ut=|Du|γF(D2u)+fin Q1的粘性解的内部C1,α估计,其中γ>-1和f∈C(Q1)∩L∞(Q1)。为此,我们证明了正则化 Cauchy-Dirichlet 问题{ut=(1+|Du|2)γ/2F(D2u)in Q1u=φon ∂pQ1(其中 γ>-2)的好求解性。我们的方法采用伯恩斯坦方法,并根据差商进行近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信