{"title":"C1,α-regularity for solutions of degenerate/singular fully nonlinear parabolic equations","authors":"Ki-Ahm Lee , Se-Chan Lee , Hyungsung Yun","doi":"10.1016/j.matpur.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span><span>-estimate for viscosity solutions<span> of degenerate/singular fully nonlinear parabolic equations</span></span><span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi></mrow></msup><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>+</mo><mi>f</mi><mspace></mspace><mtext>in </mtext><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><mi>γ</mi><mo>></mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>. For this purpose, we prove the well-posedness of the regularized Cauchy-Dirichlet problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd><mtd><mo>=</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>γ</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mtd><mtd><mspace></mspace></mtd><mtd><mrow><mtext>in </mtext><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mi>φ</mi></mtd><mtd><mspace></mspace></mtd><mtd><mrow><mtext>on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>p</mi></mrow></msub><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>γ</mi><mo>></mo><mo>−</mo><mn>2</mn></math></span>. Our approach utilizes the Bernstein method with approximations in view of the difference quotient.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish the interior -estimate for viscosity solutions of degenerate/singular fully nonlinear parabolic equations where and . For this purpose, we prove the well-posedness of the regularized Cauchy-Dirichlet problem where . Our approach utilizes the Bernstein method with approximations in view of the difference quotient.