Local well-posedness of the free-boundary incompressible magnetohydrodynamics with surface tension

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xumin Gu , Chenyun Luo , Junyan Zhang
{"title":"Local well-posedness of the free-boundary incompressible magnetohydrodynamics with surface tension","authors":"Xumin Gu ,&nbsp;Chenyun Luo ,&nbsp;Junyan Zhang","doi":"10.1016/j.matpur.2023.12.009","DOIUrl":null,"url":null,"abstract":"<div><p><span>We prove the local well-posedness of the 3D free-boundary incompressible ideal magnetohydrodynamics (MHD) equations with surface tension, which describe the motion of a perfect conducting fluid in an electromagnetic field. We adapt the ideas developed in the remarkable paper </span><span>[11]</span><span> by Coutand and Shkoller to generate an approximate problem with artificial viscosity indexed by </span><span><math><mi>κ</mi><mo>&gt;</mo><mn>0</mn></math></span> whose solution converges to that of the MHD equations as <span><math><mi>κ</mi><mo>→</mo><mn>0</mn></math></span><span>. However, the local well-posedness of the MHD equations is no easy consequence of Euler equations thanks to the strong coupling between the velocity and magnetic fields. This paper is the continuation of the second and third authors' previous work </span><span>[38]</span><span> in which the a priori energy estimate for incompressible free-boundary MHD with surface tension is established. But the existence is not a trivial consequence of the a priori estimate as it cannot be adapted directly to the approximate problem due to the loss of the symmetric structure.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the local well-posedness of the 3D free-boundary incompressible ideal magnetohydrodynamics (MHD) equations with surface tension, which describe the motion of a perfect conducting fluid in an electromagnetic field. We adapt the ideas developed in the remarkable paper [11] by Coutand and Shkoller to generate an approximate problem with artificial viscosity indexed by κ>0 whose solution converges to that of the MHD equations as κ0. However, the local well-posedness of the MHD equations is no easy consequence of Euler equations thanks to the strong coupling between the velocity and magnetic fields. This paper is the continuation of the second and third authors' previous work [38] in which the a priori energy estimate for incompressible free-boundary MHD with surface tension is established. But the existence is not a trivial consequence of the a priori estimate as it cannot be adapted directly to the approximate problem due to the loss of the symmetric structure.

具有表面张力的自由边界不可压缩磁流体力学的局部良好拟合
我们证明了具有表面张力的三维自由边界不可压缩理想磁流体力学(MHD)方程的局部好求解性,该方程描述了完全导电流体在电磁场中的运动。我们采用 Coutand 和 Shkoller 在著名论文[11]中提出的观点,生成了一个以κ>0 为索引的人工粘性近似问题,其解在 κ→0 时收敛于 MHD 方程的解。然而,由于速度场和磁场之间的强耦合,MHD方程的局部良好求解并不是欧拉方程的简单结果。本文是第二和第三作者先前工作[38]的继续,其中建立了具有表面张力的不可压缩自由边界 MHD 的先验能量估计。但是,先验估计的存在并不是一个微不足道的结果,因为由于对称结构的损失,它不能直接适用于近似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信