Mathematical informetrics: Hirsch-type equations and bundles

IF 3.4 2区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Leo Egghe
{"title":"Mathematical informetrics: Hirsch-type equations and bundles","authors":"Leo Egghe","doi":"10.1016/j.joi.2023.101479","DOIUrl":null,"url":null,"abstract":"<div><p>We define Hirsch-type equations and bundles being common generalizations of the defining equations of e.g. Hirsch-bundles, g-bundles, and Kosmulski-bundles. In this way, common properties of all these bundles can be proved. The main result proves basic inequalities for these bundles. They form the basis for convergence results as well as for criteria for these bundles to be impact bundles.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751157723001049/pdfft?md5=8dadb6dc2d94aaf2a2d130e9e184d280&pid=1-s2.0-S1751157723001049-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157723001049","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We define Hirsch-type equations and bundles being common generalizations of the defining equations of e.g. Hirsch-bundles, g-bundles, and Kosmulski-bundles. In this way, common properties of all these bundles can be proved. The main result proves basic inequalities for these bundles. They form the basis for convergence results as well as for criteria for these bundles to be impact bundles.

数学信息学:赫氏方程与赫氏束
我们定义了赫氏方程和赫氏束,它们是赫氏束、g 束和科斯穆尔斯基束等定义方程的共同概括。通过这种方式,可以证明所有这些束的共同性质。主要结果证明了这些束的基本不等式。它们是收敛结果的基础,也是这些束成为影响束的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Informetrics
Journal of Informetrics Social Sciences-Library and Information Sciences
CiteScore
6.40
自引率
16.20%
发文量
95
期刊介绍: Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信