{"title":"The image of the pop operator on various lattices","authors":"Yunseo Choi, Nathan Sun","doi":"10.1016/j.aam.2023.102649","DOIUrl":null,"url":null,"abstract":"<div><p><span>Extending the classical pop-stack sorting map on the lattice<span> given by the right weak order on </span></span><span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, Defant defined, for any lattice <em>M</em>, a map <span><math><msub><mrow><mi>Pop</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></math></span> that sends an element <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span> to the meet of <em>x</em> and the elements covered by <em>x</em>. In parallel with the line of studies on the image of the classical pop-stack sorting map, we study <span><math><msub><mrow><mi>Pop</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> when <em>M</em> is the weak order of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the Tamari lattice of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>, the lattice of order ideals<span> of the root poset of type </span></span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the lattice of order ideals of the root poset of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, we settle four conjectures proposed by Defant and Williams on the generating function<span><span><span><math><mrow><mi>Pop</mi></mrow><mo>(</mo><mi>M</mi><mo>;</mo><mi>q</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>b</mi><mo>∈</mo><msub><mrow><mi>Pop</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></mrow></munder><msup><mrow><mi>q</mi></mrow><mrow><mo>|</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>(</mo><mi>b</mi><mo>)</mo><mo>|</mo></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>(</mo><mi>b</mi><mo>)</mo></math></span> is the set of elements of <em>M</em> that cover <em>b</em>.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"154 ","pages":"Article 102649"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001677","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
Extending the classical pop-stack sorting map on the lattice given by the right weak order on , Defant defined, for any lattice M, a map that sends an element to the meet of x and the elements covered by x. In parallel with the line of studies on the image of the classical pop-stack sorting map, we study when M is the weak order of type , the Tamari lattice of type , the lattice of order ideals of the root poset of type , and the lattice of order ideals of the root poset of type . In particular, we settle four conjectures proposed by Defant and Williams on the generating function where is the set of elements of M that cover b.
迪凡特扩展了由 Sn 上的右弱序给出的晶格上的经典 pop-stack 排序映射,为任意晶格 M 定义了一个映射 PopM:M→M,它将元素 x∈M 发送到 x 与 x 所覆盖元素的相遇处。在研究经典 pop 栈排序映射的同时,我们还研究了当 M 是 Bn 型弱序、Bn 型塔马里网格、An 型根正集的阶理想网格和 Bn 型根正集的阶理想网格时的 PopM(M)。其中,UM(b) 是覆盖 b 的 M 元素集合。
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.