A. A. Serebryakova, D. V. Zaguliaev, V. V. Shlyarov
{"title":"Influence of a Magnetic Field with Induction up to 0.5 T on the Dynamics of the Deformation Characteristics of Lead","authors":"A. A. Serebryakova, D. V. Zaguliaev, V. V. Shlyarov","doi":"10.1134/S1063783423700087","DOIUrl":null,"url":null,"abstract":"<p>The effect of a magnetic field on the deformation characteristics of a diamagnetic material Grade C2 lead (99.98% purity) is studied. Initially, the creep process and the microhardness were studied in the initial state, then such studies were carried out using d.c. magnetic fields with inductions 0.3, 0.4, and 0.5 T in the process of creep of the samples and magnetic processing of the samples to study the dynamics of the microhardness and the plasticity parameter. The results of creep tests indicate the presence of an ambiguous nature of the influence of the magnetic field on the creep rate; a change in the sign of the effect was found with an increase in the value of the magnetic field induction to 0.4 and 0.5 T. Also, the alternating nature of the influence of the magnetic field was also established in the study of the microhardness. In addition, it is found that the use of a magnetic field in the process of sample creep quantitatively influences the percentage of the relative residual elongation of the sample (it decreases as compared to the initial one with an increase in the magnetic field induction) upon destruction and the creep process time (increases compared to the initial one at increase in the magnetic field induction). A rational exposure time in a magnetic field during the microhardness tests was revealed, it was found that the maximum effect of a magnetic field manifests itself at exposures for 1 h, in connection with which two exposure modes in this range (0.25 and 0.5 h) are studied.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"65 1","pages":"27 - 31"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783423700087","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of a magnetic field on the deformation characteristics of a diamagnetic material Grade C2 lead (99.98% purity) is studied. Initially, the creep process and the microhardness were studied in the initial state, then such studies were carried out using d.c. magnetic fields with inductions 0.3, 0.4, and 0.5 T in the process of creep of the samples and magnetic processing of the samples to study the dynamics of the microhardness and the plasticity parameter. The results of creep tests indicate the presence of an ambiguous nature of the influence of the magnetic field on the creep rate; a change in the sign of the effect was found with an increase in the value of the magnetic field induction to 0.4 and 0.5 T. Also, the alternating nature of the influence of the magnetic field was also established in the study of the microhardness. In addition, it is found that the use of a magnetic field in the process of sample creep quantitatively influences the percentage of the relative residual elongation of the sample (it decreases as compared to the initial one with an increase in the magnetic field induction) upon destruction and the creep process time (increases compared to the initial one at increase in the magnetic field induction). A rational exposure time in a magnetic field during the microhardness tests was revealed, it was found that the maximum effect of a magnetic field manifests itself at exposures for 1 h, in connection with which two exposure modes in this range (0.25 and 0.5 h) are studied.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.