Semantic mutation operator for a fast and efficient design of bent Boolean functions

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jakub Husa, Lukáš Sekanina
{"title":"Semantic mutation operator for a fast and efficient design of bent Boolean functions","authors":"Jakub Husa, Lukáš Sekanina","doi":"10.1007/s10710-023-09476-w","DOIUrl":null,"url":null,"abstract":"<p>Boolean functions are important cryptographic primitives with extensive use in symmetric cryptography. These functions need to possess various properties, such as nonlinearity to be useful. The main limiting factor of the quality of a Boolean function is the number of its input variables, which has to be sufficiently large. The contemporary design methods either scale poorly or are able to create only a small subset of all functions with the desired properties. This necessitates the development of new and more efficient ways of Boolean function design. In this paper, we propose a new semantic mutation operator for the design of bent Boolean functions via genetic programming. The principle of the proposed operator lies in evaluating the function’s nonlinearity in detail to purposely avoid mutations that could be disruptive and taking advantage of the fact that the nonlinearity of a Boolean function is invariant under all affine transformations. To assess the efficiency of this operator, we experiment with three distinct variants of genetic programming and compare its performance to three other commonly used non-semantic mutation operators. The detailed experimental evaluation proved that the proposed semantic mutation operator is not only significantly more efficient in terms of evaluations required by genetic programming but also nearly three times faster than the second-best operator when designing bent functions with 12 inputs and almost six times faster for functions with 20 inputs.</p>","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"9 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Programming and Evolvable Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10710-023-09476-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Boolean functions are important cryptographic primitives with extensive use in symmetric cryptography. These functions need to possess various properties, such as nonlinearity to be useful. The main limiting factor of the quality of a Boolean function is the number of its input variables, which has to be sufficiently large. The contemporary design methods either scale poorly or are able to create only a small subset of all functions with the desired properties. This necessitates the development of new and more efficient ways of Boolean function design. In this paper, we propose a new semantic mutation operator for the design of bent Boolean functions via genetic programming. The principle of the proposed operator lies in evaluating the function’s nonlinearity in detail to purposely avoid mutations that could be disruptive and taking advantage of the fact that the nonlinearity of a Boolean function is invariant under all affine transformations. To assess the efficiency of this operator, we experiment with three distinct variants of genetic programming and compare its performance to three other commonly used non-semantic mutation operators. The detailed experimental evaluation proved that the proposed semantic mutation operator is not only significantly more efficient in terms of evaluations required by genetic programming but also nearly three times faster than the second-best operator when designing bent functions with 12 inputs and almost six times faster for functions with 20 inputs.

Abstract Image

快速高效设计弯曲布尔函数的语义突变算子
布尔函数是重要的密码基元,在对称密码学中应用广泛。这些函数需要具备各种特性,如非线性,才能发挥作用。布尔函数质量的主要限制因素是其输入变量的数量,这个数量必须足够大。当代的设计方法要么扩展性差,要么只能创建具有所需特性的所有函数中的一小部分。这就需要开发新的、更有效的布尔函数设计方法。在本文中,我们提出了一种新的语义突变算子,用于通过遗传编程设计弯曲布尔函数。所提算子的原理在于详细评估函数的非线性,有目的地避免可能具有破坏性的突变,并利用布尔函数的非线性在所有仿射变换下都是不变的这一事实。为了评估该算子的效率,我们用遗传编程的三种不同变体进行了实验,并将其性能与其他三种常用的非语义突变算子进行了比较。详细的实验评估证明,所提出的语义突变算子不仅大大提高了遗传编程所需的评估效率,而且在设计具有 12 个输入的弯曲函数时,比排名第二的算子快近三倍,在设计具有 20 个输入的函数时快近六倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetic Programming and Evolvable Machines
Genetic Programming and Evolvable Machines 工程技术-计算机:理论方法
CiteScore
5.90
自引率
3.80%
发文量
19
审稿时长
6 months
期刊介绍: A unique source reporting on methods for artificial evolution of programs and machines... Reports innovative and significant progress in automatic evolution of software and hardware. Features both theoretical and application papers. Covers hardware implementations, artificial life, molecular computing and emergent computation techniques. Examines such related topics as evolutionary algorithms with variable-size genomes, alternate methods of program induction, approaches to engineering systems development based on embryology, morphogenesis or other techniques inspired by adaptive natural systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信