Asymptotics for real monotone double Hurwitz numbers

IF 0.9 2区 数学 Q2 MATHEMATICS
Yanqiao Ding, Qinhao He
{"title":"Asymptotics for real monotone double Hurwitz numbers","authors":"Yanqiao Ding,&nbsp;Qinhao He","doi":"10.1016/j.jcta.2023.105848","DOIUrl":null,"url":null,"abstract":"<div><p><span>In recent years, monotone double Hurwitz numbers were introduced as a naturally combinatorial modification of double Hurwitz numbers. Monotone double Hurwitz numbers share many structural properties with their classical counterparts, such as piecewise polynomiality, while the quantitative properties of these two numbers are quite different. We consider real analogues of monotone double Hurwitz numbers and study the asymptotics for these real analogues. The key ingredient is an interpretation of real tropical covers with arbitrary splittings as factorizations<span> in the symmetric group which generalizes the result from Guay-Paquet et al. (2016) </span></span><span>[18]</span>. By using the above interpretation, we consider three types of real analogues of monotone double Hurwitz numbers: real monotone double Hurwitz numbers relative to simple splittings, relative to arbitrary splittings and real mixed double Hurwitz numbers. Under certain conditions, we find lower bounds for these real analogues, and obtain logarithmic asymptotics for real monotone double Hurwitz numbers relative to arbitrary splittings and real mixed double Hurwitz numbers. In particular, under given conditions real mixed double Hurwitz numbers are logarithmically equivalent to complex double Hurwitz numbers. We construct a family of real tropical covers and use them to show that real monotone double Hurwitz numbers relative to simple splittings are logarithmically equivalent to monotone double Hurwitz numbers with specific conditions. This is consistent with the logarithmic equivalence of real double Hurwitz numbers and complex double Hurwitz numbers.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105848"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001164","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, monotone double Hurwitz numbers were introduced as a naturally combinatorial modification of double Hurwitz numbers. Monotone double Hurwitz numbers share many structural properties with their classical counterparts, such as piecewise polynomiality, while the quantitative properties of these two numbers are quite different. We consider real analogues of monotone double Hurwitz numbers and study the asymptotics for these real analogues. The key ingredient is an interpretation of real tropical covers with arbitrary splittings as factorizations in the symmetric group which generalizes the result from Guay-Paquet et al. (2016) [18]. By using the above interpretation, we consider three types of real analogues of monotone double Hurwitz numbers: real monotone double Hurwitz numbers relative to simple splittings, relative to arbitrary splittings and real mixed double Hurwitz numbers. Under certain conditions, we find lower bounds for these real analogues, and obtain logarithmic asymptotics for real monotone double Hurwitz numbers relative to arbitrary splittings and real mixed double Hurwitz numbers. In particular, under given conditions real mixed double Hurwitz numbers are logarithmically equivalent to complex double Hurwitz numbers. We construct a family of real tropical covers and use them to show that real monotone double Hurwitz numbers relative to simple splittings are logarithmically equivalent to monotone double Hurwitz numbers with specific conditions. This is consistent with the logarithmic equivalence of real double Hurwitz numbers and complex double Hurwitz numbers.

实单调双赫尔维茨数的渐近线
近年来,单调双赫尔维茨数作为双赫尔维茨数的自然组合修正被引入。单调双赫尔维茨数与其经典对应数有许多共同的结构性质,如片断多项式性,而这两个数的数量性质却大不相同。我们考虑了单调双赫尔维茨数的实数类似物,并研究了这些实数类似物的渐近性。其中的关键要素是将具有任意分裂的实热带封面解释为对称群中的因子化,这概括了 Guay-Paquet 等人(2016)[18] 的结果。通过使用上述解释,我们考虑了单调双赫维茨数的三种实数类比:相对于简单分裂的实数单调双赫维茨数、相对于任意分裂的实数单调双赫维茨数和实数混合双赫维茨数。在一定条件下,我们找到了这些实数类似数的下界,并得到了相对于任意分裂的实数单调双赫尔维茨数和实混合双赫尔维茨数的对数渐近线。特别是,在给定条件下,实混合双赫尔维茨数在对数上等价于复数双赫尔维茨数。我们构建了一个实数热带封面族,并用它们证明了相对于简单分裂的实数单调双赫尔维茨数在特定条件下对数等价于单调双赫尔维茨数。这与实双赫尔维茨数和复双赫尔维茨数的对数等价是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信