Advancing high-throughput screening systems for synthetic biology and biofoundry

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kil Koang Kwon , Jinju Lee , Haseong Kim , Dae-Hee Lee , Seung-Goo Lee
{"title":"Advancing high-throughput screening systems for synthetic biology and biofoundry","authors":"Kil Koang Kwon ,&nbsp;Jinju Lee ,&nbsp;Haseong Kim ,&nbsp;Dae-Hee Lee ,&nbsp;Seung-Goo Lee","doi":"10.1016/j.coisb.2023.100487","DOIUrl":null,"url":null,"abstract":"<div><p>High-throughput (HT) methodologies are extensively applied in synthetic biology for the rapid enrichment and selection of desired properties from a wide range of genetic diversity. In order to effectively analyze these vast variants, HT tools must offer parallel experiments and compact reaction capabilities to enhance overall throughput. Here, we discuss about various aspects of three representative high-throughput screening (HTS) systems: microwell-, droplet-, and single-cell-based screening. These systems can be categorized based on their reaction volume, which in turn determines the associated technology, machinery, and supporting applications. Furthermore, HT techniques that rapidly connect numerous genotypes and phenotypes have evolved to enhance the precision of predictions through the integration of digital technologies like machine learning and artificial intelligence. The use of advanced HT techniques within biofoundry will enable rapid selection and analysis from extensive genetic diversity, making it a driving force for the advancement of synthetic biology.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100487"},"PeriodicalIF":3.4000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310023000446/pdfft?md5=c79f76a94a5c0e68e948902ca3894d28&pid=1-s2.0-S2452310023000446-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput (HT) methodologies are extensively applied in synthetic biology for the rapid enrichment and selection of desired properties from a wide range of genetic diversity. In order to effectively analyze these vast variants, HT tools must offer parallel experiments and compact reaction capabilities to enhance overall throughput. Here, we discuss about various aspects of three representative high-throughput screening (HTS) systems: microwell-, droplet-, and single-cell-based screening. These systems can be categorized based on their reaction volume, which in turn determines the associated technology, machinery, and supporting applications. Furthermore, HT techniques that rapidly connect numerous genotypes and phenotypes have evolved to enhance the precision of predictions through the integration of digital technologies like machine learning and artificial intelligence. The use of advanced HT techniques within biofoundry will enable rapid selection and analysis from extensive genetic diversity, making it a driving force for the advancement of synthetic biology.

推进合成生物学和生物铸造的高通量筛选系统
高通量(HT)方法被广泛应用于合成生物学中,用于从广泛的遗传多样性中快速富集和选择所需的特性。为了有效地分析这些庞大的变体,高通量筛选工具必须提供并行实验和紧凑的反应能力,以提高总体通量。在此,我们将讨论三种具有代表性的高通量筛选(HTS)系统的各个方面:微丸筛选、液滴筛选和单细胞筛选。这些系统可根据其反应量进行分类,而反应量又决定了相关的技术、机器和支持应用。此外,快速连接大量基因型和表型的 HT 技术也在不断发展,通过整合机器学习和人工智能等数字技术,提高了预测的准确性。在生物铸造领域使用先进的 HT 技术,可以从广泛的遗传多样性中进行快速选择和分析,从而推动合成生物学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信