Application of GIS-based data-driven bivariate statistical models for landslide prediction: a case study of highly affected landslide prone areas of Teesta River basin

IF 2.9 Q2 GEOGRAPHY, PHYSICAL
Indrajit Poddar, Ranjan Roy
{"title":"Application of GIS-based data-driven bivariate statistical models for landslide prediction: a case study of highly affected landslide prone areas of Teesta River basin","authors":"Indrajit Poddar,&nbsp;Ranjan Roy","doi":"10.1016/j.qsa.2023.100150","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting landslides has become a critical global challenge for promoting sustainable development in mountainous regions. This study conducts a comparative analysis of landslide susceptibility maps (L.S.M.s) generated using two GIS-based data-driven bivariate statistical models: (a) Frequency Ratio (F.R.) and (b) Evidential Belief Function (E.B.F). These models are applied and evaluated in the high landslide-prone upper and middle Teesta basin of the Darjeeling-Sikkim Himalaya, leveraging geographic information system (GIS) and remote sensing techniques. We compile a comprehensive landslide inventory map containing 2387 regional landslide points. We use approximately 70% of this dataset for model training and reserve the remaining 30% for validation. In the construction of the Landslide Susceptibility maps (LSMs), a comprehensive set of twenty-one landslide-triggering parameters has been considered. These parameters encompass factors such as elevation, distance from drainage, distance from lineament, distance from roads, geology, geomorphology, lithology, land use, and land cover, normalized difference vegetation index, profile curvature, rainfall, relief amplitude, roughness, slope, slope aspect, slope classes, stream power index, sediment transport index, topographic position index, topographic ruggedness index, and topographic wetness index. An examination of multicollinearity statistics reveals no collinearity issues among the twenty-one causative factors utilized in this research. The final L.S.M.s demonstrate that the combined application of the F.R. and E.B.F. models yields the highest training accuracy at 98.10%. The insights derived from this study hold significant promise as valuable tools for assessing environmental hazards and land use planning.</p></div>","PeriodicalId":34142,"journal":{"name":"Quaternary Science Advances","volume":"13 ","pages":"Article 100150"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666033423000825/pdfft?md5=1463d4e089614e64c80c9ac7d7465052&pid=1-s2.0-S2666033423000825-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666033423000825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting landslides has become a critical global challenge for promoting sustainable development in mountainous regions. This study conducts a comparative analysis of landslide susceptibility maps (L.S.M.s) generated using two GIS-based data-driven bivariate statistical models: (a) Frequency Ratio (F.R.) and (b) Evidential Belief Function (E.B.F). These models are applied and evaluated in the high landslide-prone upper and middle Teesta basin of the Darjeeling-Sikkim Himalaya, leveraging geographic information system (GIS) and remote sensing techniques. We compile a comprehensive landslide inventory map containing 2387 regional landslide points. We use approximately 70% of this dataset for model training and reserve the remaining 30% for validation. In the construction of the Landslide Susceptibility maps (LSMs), a comprehensive set of twenty-one landslide-triggering parameters has been considered. These parameters encompass factors such as elevation, distance from drainage, distance from lineament, distance from roads, geology, geomorphology, lithology, land use, and land cover, normalized difference vegetation index, profile curvature, rainfall, relief amplitude, roughness, slope, slope aspect, slope classes, stream power index, sediment transport index, topographic position index, topographic ruggedness index, and topographic wetness index. An examination of multicollinearity statistics reveals no collinearity issues among the twenty-one causative factors utilized in this research. The final L.S.M.s demonstrate that the combined application of the F.R. and E.B.F. models yields the highest training accuracy at 98.10%. The insights derived from this study hold significant promise as valuable tools for assessing environmental hazards and land use planning.

基于地理信息系统的数据驱动型双变量统计模型在滑坡预测中的应用:泰斯特河流域受影响严重的滑坡易发区案例研究
预测山体滑坡已成为促进山区可持续发展的重要全球性挑战。本研究对使用两种基于地理信息系统的数据驱动双变量统计模型生成的滑坡易发性地图(L.S.M.s)进行了比较分析:(a) 频率比(F.R.)和 (b) 证据信念函数(E.B.F.)。我们利用地理信息系统 (GIS) 和遥感技术,在大吉岭-锡金喜马拉雅山蒂埃斯塔盆地中上游滑坡高发区应用并评估了这些模型。我们编制了一份全面的滑坡清单地图,其中包含 2387 个区域滑坡点。我们将其中约 70% 的数据集用于模型训练,剩余的 30% 用于验证。在构建滑坡易发性地图(LSM)时,我们考虑了 21 个滑坡触发参数的综合集合。这些参数包括海拔、与排水沟的距离、与线状物的距离、与道路的距离、地质、地貌、岩性、土地利用和土地覆盖、归一化差异植被指数、剖面弯曲度、降雨量、地貌振幅、粗糙度、坡度、坡面、坡度等级、溪流动力指数、泥沙输运指数、地形位置指数、地形崎岖指数和地形湿润指数等因素。多重共线性统计结果表明,本研究使用的 21 个因果因子之间不存在共线性问题。最终的 L.S.M.s 表明,F.R.和 E.B.F. 模型的综合应用产生了最高的训练精确度(98.10%)。本研究得出的结论有望成为评估环境危害和土地利用规划的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quaternary Science Advances
Quaternary Science Advances Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.00
自引率
13.30%
发文量
16
审稿时长
61 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信