Continuous-time stochastic gradient descent for optimizing over the stationary distribution of stochastic differential equations

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Ziheng Wang, Justin Sirignano
{"title":"Continuous-time stochastic gradient descent for optimizing over the stationary distribution of stochastic differential equations","authors":"Ziheng Wang,&nbsp;Justin Sirignano","doi":"10.1111/mafi.12422","DOIUrl":null,"url":null,"abstract":"<p>We develop a new continuous-time stochastic gradient descent method for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm continuously updates the SDE model's parameters using an estimate for the gradient of the stationary distribution. The gradient estimate is simultaneously updated using forward propagation of the SDE state derivatives, asymptotically converging to the direction of steepest descent. We rigorously prove convergence of the online forward propagation algorithm for linear SDE models (i.e., the multidimensional Ornstein–Uhlenbeck process) and present its numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the direction of steepest descent. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds for the solutions of a new class of Poisson partial differential equations (PDEs), which are then used to analyze the parameter fluctuations in the algorithm. Our algorithm is applicable to a range of mathematical finance applications involving statistical calibration of SDE models and stochastic optimal control for long time horizons where ergodicity of the data and stochastic process is a suitable modeling framework. Numerical examples explore these potential applications, including learning a neural network control for high-dimensional optimal control of SDEs and training stochastic point process models of limit order book events.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"34 2","pages":"348-424"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12422","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a new continuous-time stochastic gradient descent method for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm continuously updates the SDE model's parameters using an estimate for the gradient of the stationary distribution. The gradient estimate is simultaneously updated using forward propagation of the SDE state derivatives, asymptotically converging to the direction of steepest descent. We rigorously prove convergence of the online forward propagation algorithm for linear SDE models (i.e., the multidimensional Ornstein–Uhlenbeck process) and present its numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the direction of steepest descent. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds for the solutions of a new class of Poisson partial differential equations (PDEs), which are then used to analyze the parameter fluctuations in the algorithm. Our algorithm is applicable to a range of mathematical finance applications involving statistical calibration of SDE models and stochastic optimal control for long time horizons where ergodicity of the data and stochastic process is a suitable modeling framework. Numerical examples explore these potential applications, including learning a neural network control for high-dimensional optimal control of SDEs and training stochastic point process models of limit order book events.

随机微分方程平稳分布上的连续时间随机梯度下降优化
针对随机微分方程(SDE)模型的平稳分布,提出了一种新的连续时间随机梯度下降优化方法。该算法通过对平稳分布梯度的估计不断更新SDE模型的参数。使用SDE状态导数的前向传播同时更新梯度估计,渐近收敛到最陡下降方向。我们严格证明了线性SDE模型(即多维Ornstein-Uhlenbeck过程)的在线前向传播算法的收敛性,并给出了非线性实例的数值结果。证明需要分析参数沿最陡下降方向的演化波动。由于该算法的在线性质(例如,平稳分布将随着参数的变化而不断变化),很难获得波动的边界。我们证明了一类新的泊松偏微分方程(PDEs)解的界,然后用它来分析算法中的参数波动。我们的算法适用于一系列数学金融应用,包括SDE模型的统计校准和长期范围的随机最优控制,其中数据的遍历性和随机过程是一个合适的建模框架。数值例子探讨了这些潜在的应用,包括学习用于SDEs高维最优控制的神经网络控制和极限订单事件的随机点过程模型的训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信