{"title":"Sulfur and carbon co-doped g-C3N4 microtubes with enhanced photocatalytic H2 production activity","authors":"Yang Ge, Quanhao Shen, Qi Zhang, Naixu Li, Danchen Lu, Zhaoming Zhang, Zhiwei Fu, Jiancheng Zhou","doi":"10.1007/s11708-023-0899-z","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-free graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has captured significant attention as a low-cost and efficient hydrogen production photocatalyst through. Effectively regulating the microstructure and accelerating the separation of photogenerated carriers remain crucial strategies for promoting the photocatalytic performance of this material. Herein, a novel sulfur–carbon co-doped g-C<sub>3</sub>N<sub>4</sub> (SCCN) hierarchical microtubules filled with abundant nanosheets inside by thermal polymerization is reported. Numerous nanosheets create abundant pores and cavities inside the SCCN microtubes, thereby increasing the specific surface area of g-C<sub>3</sub>N<sub>4</sub> and providing sufficient reactant attachment sites. Besides, the hierarchical structure of SCCN microtubules strengthens the reflection and scattering of light, and the utilization of visible light is favorably affected. More importantly, co-doping S and C has greatly improved the photocatalytic performance of graphitic carbon nitride, optimized the band gap structure and enhanced the photogenerated carrier splitting. Consequently, the SCCN exhibits a remarkable photocatalytic H<sub>2</sub> evolution rate of 4868 µmol/(g·h). This work demonstrates the potential of multi-nonmetal doped g-C<sub>3</sub>N<sub>4</sub> as the ideal photocatalyst for H<sub>2</sub> evolution.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 1","pages":"110 - 121"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-023-0899-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-free graphitic carbon nitride (g-C3N4) has captured significant attention as a low-cost and efficient hydrogen production photocatalyst through. Effectively regulating the microstructure and accelerating the separation of photogenerated carriers remain crucial strategies for promoting the photocatalytic performance of this material. Herein, a novel sulfur–carbon co-doped g-C3N4 (SCCN) hierarchical microtubules filled with abundant nanosheets inside by thermal polymerization is reported. Numerous nanosheets create abundant pores and cavities inside the SCCN microtubes, thereby increasing the specific surface area of g-C3N4 and providing sufficient reactant attachment sites. Besides, the hierarchical structure of SCCN microtubules strengthens the reflection and scattering of light, and the utilization of visible light is favorably affected. More importantly, co-doping S and C has greatly improved the photocatalytic performance of graphitic carbon nitride, optimized the band gap structure and enhanced the photogenerated carrier splitting. Consequently, the SCCN exhibits a remarkable photocatalytic H2 evolution rate of 4868 µmol/(g·h). This work demonstrates the potential of multi-nonmetal doped g-C3N4 as the ideal photocatalyst for H2 evolution.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue