Proton Plasma Asymmetries between the Convective-Electric-Field Hemispheres of Venus' Dayside Magnetosheath

IF 1.7 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Sebastián Rojas Mata, Gabriella Stenberg Wieser, Tielong Zhang, Yoshifumi Futaana
{"title":"Proton Plasma Asymmetries between the Convective-Electric-Field Hemispheres of Venus' Dayside Magnetosheath","authors":"Sebastián Rojas Mata, Gabriella Stenberg Wieser, Tielong Zhang, Yoshifumi Futaana","doi":"10.5194/egusphere-2023-2570","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Proton plasma asymmetries with respect to the convective electric field (<strong>E</strong>) are characterized in Venus’ dayside magnetosheath using measurements taken by an ion mass-energy spectrometer and a magnetometer. Investigating the spatial structure of the magnetosheath plasma in this manner provides insight into the coupling between solar-wind protons and planetary ions. A previously developed methodology for statistically quantifying asymmetries is further developed and applied to an existing database of proton bulk-parameter measurements in the dayside magnetosheath. The density and speed exhibit weak asymmetries favoring the hemisphere in which <strong>E</strong> points towards the planet, while the magnetic-field strength has a weak asymmetry favoring the opposite hemisphere. The temperatures perpendicular and parallel to the background magnetic field as well as their ratio present no significant asymmetries. Deflection of the solar wind due to momentum exchange with planetary ions is revealed by (1) the O<sup>+</sup> Larmor-radius trends of the asymmetries of the bulk-velocity components perpendicular to the upstream solar-wind flow and (2) the <strong>E</strong>×<strong>B</strong><em><sub>IMF</sub></em> -drift trends of the bulk-velocity component along the cross-flow component of the interplanetary magnetic field (<strong>B</strong><em><sub>IMF</sub></em>). These interpretations are enabled by comparisons to studies of solar-wind deflection at Mars and comet 67P/Churyumov-Gerasimenko, highlighting the benefits of comparative planetology studies.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Geophysicae","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2023-2570","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Proton plasma asymmetries with respect to the convective electric field (E) are characterized in Venus’ dayside magnetosheath using measurements taken by an ion mass-energy spectrometer and a magnetometer. Investigating the spatial structure of the magnetosheath plasma in this manner provides insight into the coupling between solar-wind protons and planetary ions. A previously developed methodology for statistically quantifying asymmetries is further developed and applied to an existing database of proton bulk-parameter measurements in the dayside magnetosheath. The density and speed exhibit weak asymmetries favoring the hemisphere in which E points towards the planet, while the magnetic-field strength has a weak asymmetry favoring the opposite hemisphere. The temperatures perpendicular and parallel to the background magnetic field as well as their ratio present no significant asymmetries. Deflection of the solar wind due to momentum exchange with planetary ions is revealed by (1) the O+ Larmor-radius trends of the asymmetries of the bulk-velocity components perpendicular to the upstream solar-wind flow and (2) the E×BIMF -drift trends of the bulk-velocity component along the cross-flow component of the interplanetary magnetic field (BIMF). These interpretations are enabled by comparisons to studies of solar-wind deflection at Mars and comet 67P/Churyumov-Gerasimenko, highlighting the benefits of comparative planetology studies.
金星日侧磁鞘对流电场半球间质子等离子体的不对称性
摘要。质子等离子体相对于对流电场(E)的不对称性在金星的日侧磁鞘中被离子质能谱仪和磁力计测量表征。以这种方式研究磁鞘等离子体的空间结构可以深入了解太阳风质子和行星离子之间的耦合。一种先前开发的统计量化不对称的方法被进一步开发,并应用于日光侧磁鞘中质子体积参数测量的现有数据库。密度和速度表现出微弱的不对称,有利于E指向行星的半球,而磁场强度则表现出微弱的不对称,有利于相反的半球。垂直和平行于背景磁场的温度及其比值没有明显的不对称性。(1)垂直于上游太阳风流的体速分量的不对称性的O+ larmorr -半径趋势和(2)体速分量沿行星际磁场横流分量(BIMF)的E×BIMF -漂移趋势揭示了太阳风与行星离子动量交换引起的偏转。这些解释是通过与火星和67P/Churyumov-Gerasimenko彗星太阳风偏转的研究进行比较而实现的,突出了比较行星学研究的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Geophysicae
Annales Geophysicae 地学-地球科学综合
CiteScore
4.30
自引率
0.00%
发文量
42
审稿时长
2 months
期刊介绍: Annales Geophysicae (ANGEO) is a not-for-profit international multi- and inter-disciplinary scientific open-access journal in the field of solar–terrestrial and planetary sciences. ANGEO publishes original articles and short communications (letters) on research of the Sun–Earth system, including the science of space weather, solar–terrestrial plasma physics, the Earth''s ionosphere and atmosphere, the magnetosphere, and the study of planets and planetary systems, the interaction between the different spheres of a planet, and the interaction across the planetary system. Topics range from space weathering, planetary magnetic field, and planetary interior and surface dynamics to the formation and evolution of planetary systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信