Polylactic Acid-Based Film Modified with Nano-Ag-Graphene-TiO2: New Film versus Recycled Film

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Anca Peter, Camelia Nicula, Anca Mihaly Cozmuta, Goran Drazic, Antonio Peñas, Stefania Silvi, Leonard Mihaly Cozmuta
{"title":"Polylactic Acid-Based Film Modified with Nano-Ag-Graphene-TiO2: New Film versus Recycled Film","authors":"Anca Peter, Camelia Nicula, Anca Mihaly Cozmuta, Goran Drazic, Antonio Peñas, Stefania Silvi, Leonard Mihaly Cozmuta","doi":"10.1155/2023/9937270","DOIUrl":null,"url":null,"abstract":"The increase in the polymer-based materials needs has induced along the waste accumulation, thus argued higher interest in recycling. The study aims to assess the structural, morphological, mechanical resistance, physical–chemical and biochemical characteristics, as well as the preservative role during the curd cheese storage of a recycled polylactic acid (PLA)-based film modified with Ag-graphene-TiO<sub>2</sub> nanostructured composite, obtained by recovering the composite from the used film, followed by its incorporation in new PLA. The breaking load of the recycled film was 24% lower than that of the new film and 10% higher than of the neat PLA. Differential scanning calorimetry (DSC) showed changes of the recycled PLA’s surface tension and crystallization degree in a greater extent than in the newly prepared film, revealing better incorporation of the recovered composite into the PLA matrix. Fourier transformed infrared spectroscopy showed the formation of C–O–Ti bridges between composite and PLA both in new and recycled film. Oxygen transmission rate (OTR) of the new and recycled film decreased by 33% and 45%, respectively, in comparison with reference PLA. The curd cheese was successfully stored in the recycled packaging; the organoleptic characteristics of cheese wrapped in recycled film were superior in comparison with the new film. The variation of fat and protein contents and mass loss was the lowest when the recycled film was used as packaging material. The study successfully showed the possibility to recover and recycle the used PLA-based films modified with inorganic nanocomposites.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/9937270","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in the polymer-based materials needs has induced along the waste accumulation, thus argued higher interest in recycling. The study aims to assess the structural, morphological, mechanical resistance, physical–chemical and biochemical characteristics, as well as the preservative role during the curd cheese storage of a recycled polylactic acid (PLA)-based film modified with Ag-graphene-TiO2 nanostructured composite, obtained by recovering the composite from the used film, followed by its incorporation in new PLA. The breaking load of the recycled film was 24% lower than that of the new film and 10% higher than of the neat PLA. Differential scanning calorimetry (DSC) showed changes of the recycled PLA’s surface tension and crystallization degree in a greater extent than in the newly prepared film, revealing better incorporation of the recovered composite into the PLA matrix. Fourier transformed infrared spectroscopy showed the formation of C–O–Ti bridges between composite and PLA both in new and recycled film. Oxygen transmission rate (OTR) of the new and recycled film decreased by 33% and 45%, respectively, in comparison with reference PLA. The curd cheese was successfully stored in the recycled packaging; the organoleptic characteristics of cheese wrapped in recycled film were superior in comparison with the new film. The variation of fat and protein contents and mass loss was the lowest when the recycled film was used as packaging material. The study successfully showed the possibility to recover and recycle the used PLA-based films modified with inorganic nanocomposites.
纳米ag -石墨烯- tio2改性聚乳酸基薄膜:新膜与再生膜
聚合物基材料需求的增加引起了废物的积累,从而引起了人们对回收利用的更高兴趣。该研究旨在评估用ag -石墨烯- tio2纳米复合材料改性的聚乳酸(PLA)基薄膜的结构、形态、机械阻力、物理化学和生化特性,以及在凝乳奶酪储存过程中的防腐作用。该复合材料是通过从废旧薄膜中回收该复合材料,然后将其掺入新的PLA中。再生膜的断裂载荷比新膜低24%,比纯PLA高10%。差示扫描量热法(DSC)显示,与新制备的薄膜相比,回收PLA的表面张力和结晶程度发生了更大的变化,表明回收的复合材料更好地融入PLA基体。傅里叶变换红外光谱显示,在新膜和回收膜中,复合材料与PLA之间都形成了C-O-Ti桥。与参考聚乳酸相比,新膜和再生膜的透氧率分别降低33%和45%。凝乳奶酪被成功地储存在回收的包装中;与新膜相比,用再生膜包装的奶酪的感官特性更优越。以再生膜为包装材料时,脂肪、蛋白质含量变化最小,质量损失最小。该研究成功地展示了用无机纳米复合材料修饰的废旧pla基薄膜的回收和循环利用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信