{"title":"Simultaneous catalytic removal of NO and chlorobenzene over Mn–Ce-Sm-Sn-Ox/P84 composite catalytic filter","authors":"Mutao Xu, Liguo Chen, Xinpei Cheng, Qijie Jin, Ranran Zhou, Jian Yang, Chengzhang Zhu, Sheng Wang, Haitao Xu","doi":"10.1016/j.jre.2023.11.010","DOIUrl":null,"url":null,"abstract":"<p>The integration of surface filtration and catalytic decomposition functions in catalytic bags enables the synergistic removal of multiple pollutants (such as dust, nitrogen oxide, acid gases, and dioxins) in a single reactor, thus effectively reducing the cost and operational difficulties associated with flue gas treatment. In this study, Mn–Ce-Sm-Sn (MCSS) catalysts were prepared and loaded onto high-temperature resistant polyimide (P84) filter through ultrasonic impregnation to create composite catalytic filter. The results demonstrate that the NO conversion rates of the composite catalytic filter consistently achieve above 95 % within the temperature range of 160–260 °C, with a chlorobenzene <em>T</em><sub>90</sub> value of 230 °C. The ultrasonic impregnation method effectively loaded the catalyst onto the filter, ensuring high dispersion both on the surface and inside the filter. This increased exposure of catalyst active sites enhances the catalytic activity of the composite catalytic filter. Additionally, increasing the catalyst loading leads to a gradual decrease in permeability, an increase in pressure drops and the long residence time of the flue gas, thereby improving catalytic activity. Compared to ordinary impregnation methods, ultrasonic impregnation improves the bonding strength between the catalyst and filter, as well as the permeability of the composite catalytic filter under the same loading conditions. Overall, this study presents a novel approach to prepare composite catalytic filter for the simultaneous removal of NO and chlorobenzene at low temperatures.</p>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"21 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jre.2023.11.010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of surface filtration and catalytic decomposition functions in catalytic bags enables the synergistic removal of multiple pollutants (such as dust, nitrogen oxide, acid gases, and dioxins) in a single reactor, thus effectively reducing the cost and operational difficulties associated with flue gas treatment. In this study, Mn–Ce-Sm-Sn (MCSS) catalysts were prepared and loaded onto high-temperature resistant polyimide (P84) filter through ultrasonic impregnation to create composite catalytic filter. The results demonstrate that the NO conversion rates of the composite catalytic filter consistently achieve above 95 % within the temperature range of 160–260 °C, with a chlorobenzene T90 value of 230 °C. The ultrasonic impregnation method effectively loaded the catalyst onto the filter, ensuring high dispersion both on the surface and inside the filter. This increased exposure of catalyst active sites enhances the catalytic activity of the composite catalytic filter. Additionally, increasing the catalyst loading leads to a gradual decrease in permeability, an increase in pressure drops and the long residence time of the flue gas, thereby improving catalytic activity. Compared to ordinary impregnation methods, ultrasonic impregnation improves the bonding strength between the catalyst and filter, as well as the permeability of the composite catalytic filter under the same loading conditions. Overall, this study presents a novel approach to prepare composite catalytic filter for the simultaneous removal of NO and chlorobenzene at low temperatures.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.