{"title":"Propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal","authors":"Juan He, Guo-Bao Zhang, Ting Liu","doi":"10.1017/s0956792523000311","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline1.png\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the existence of travelling wavefronts with the wave speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline2.png\" /> <jats:tex-math> $c\\ge c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the nonexistence of travelling wavefronts with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline3.png\" /> <jats:tex-math> $c\\lt c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline4.png\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are provided.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed $c^*$ , the existence of travelling wavefronts with the wave speed $c\ge c^*$ and the nonexistence of travelling wavefronts with $c\lt c^*$ . It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed $c^*$ are provided.