Olga Kozhar , Kelly S. Burns , Anna W. Schoettle , Jane E. Stewart
{"title":"Distribution of Cronartium x flexili, an interspecific hybrid of two fungal tree rust pathogens, in subalpine forest ecosystems of western USA","authors":"Olga Kozhar , Kelly S. Burns , Anna W. Schoettle , Jane E. Stewart","doi":"10.1016/j.funbio.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>Interspecific hybridization plays a key role in the evolution of novel fungal pathogens, and when it occurs between native and invasive species, can lead to potentially serious consequences. In this study, we examined the temporal and spatial distribution of a recently detected hybrid (<em>Cronartium x flexili</em>) of two tree pathogens, invasive to North America <em>Cronartium ribicola</em> and native <em>Cronartium comandrae</em>. In total, 726 and 1452 aecia from 178 <em>Pinus contorta</em> ssp. <em>latifolia</em> and 357 <em>Pinus flexilis</em> trees were collected from 26 sites in four national forests in 2019–2021. Using morphological and molecular analyses, 71 aecia collected from 25 <em>P. flexilis</em> trees had intermediate morphology and contained heterozygous SNPs in two genomic regions. Population analyses revealed the presence of multiple hybrid genotypes randomly distributed among sites and years. No aecia from <em>P. contorta</em> ssp<em>. latifolia</em> were identified as hybrids suggesting unidirectional gene flow from native <em>C. comandrae</em> to invasive <em>C. ribicola</em>. Aeciospores from 2 hybrid aecia produced urediniospores on <em>Ribes nigrum</em>. Overall, these results suggest that, even though low in frequency, <em>C. x flexili</em> is persistent in the region and has pathogenic potential. Hybrid expansion into the large range of susceptible pines could have cascading impacts on forest health.</p></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"128 1","pages":"Pages 1578-1589"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878614623001228/pdfft?md5=f0a99a5c741d7da45850d829cacb6b03&pid=1-s2.0-S1878614623001228-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614623001228","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interspecific hybridization plays a key role in the evolution of novel fungal pathogens, and when it occurs between native and invasive species, can lead to potentially serious consequences. In this study, we examined the temporal and spatial distribution of a recently detected hybrid (Cronartium x flexili) of two tree pathogens, invasive to North America Cronartium ribicola and native Cronartium comandrae. In total, 726 and 1452 aecia from 178 Pinus contorta ssp. latifolia and 357 Pinus flexilis trees were collected from 26 sites in four national forests in 2019–2021. Using morphological and molecular analyses, 71 aecia collected from 25 P. flexilis trees had intermediate morphology and contained heterozygous SNPs in two genomic regions. Population analyses revealed the presence of multiple hybrid genotypes randomly distributed among sites and years. No aecia from P. contorta ssp. latifolia were identified as hybrids suggesting unidirectional gene flow from native C. comandrae to invasive C. ribicola. Aeciospores from 2 hybrid aecia produced urediniospores on Ribes nigrum. Overall, these results suggest that, even though low in frequency, C. x flexili is persistent in the region and has pathogenic potential. Hybrid expansion into the large range of susceptible pines could have cascading impacts on forest health.
期刊介绍:
Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.